当前位置: X-MOL 学术Environ. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Methane Bubble Ascent within Fine-Grained Cohesive Aquatic Sediments: Dynamics and Controlling Factors
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2019-05-13 , DOI: 10.1021/acs.est.8b06848
Shahrazad Tarboush Sirhan 1 , Regina Katsman 1 , Michael Lazar 1
Affiliation  

Methane (CH4) is a potent greenhouse gas. Its release from aquatic sediments to the water column and potentially to the atmosphere, is a subject of great concern. A coupled macroscopic single-bubble mechanical/reaction-transport numerical model was used to explore the ascent of a mature CH4 bubble toward the seafloor in muddy aquatic sediment. Two bubble ascent scenarios were demonstrated: stable and dynamic. For small effective overburden loads (≤11 kPa), stable ascent is followed by dynamic ascent (which has not been previously demonstrated to the best of the our knowledge). This ultimately leads to the bubble being released to the water column. Higher effective overburden loads induce only stable bubble ascent, which stops at the gas horizon frequently observed below the seafloor. The depth of the gas horizon increases, while bubble rise velocity decreases with an increase in the overburden load. It is shown that the bubble migration scenario is managed predominantly by inner bubble pressure, which defines a bubble solute exchange with ambient porewaters. Predicting a bubble ascent scenario in muddy sediment will further allow estimation of CH4 emission to the atmosphere and evaluation of changes in the effective mechanical properties of aquatic sediment due to the ascending bubbles.

中文翻译:

细颗粒粘性水系沉积物中的甲烷气泡上升:动力学和控制因素

甲烷(CH 4)是一种有力的温室气体。它从水生沉积物中释放到水柱中,甚至可能释放到大气中,是一个非常令人关注的问题。耦合的宏观单气泡力学/反应-传输数值模型被用来研究成熟的CH 4气泡在泥泞水生沉积物中向海底的上升。演示了两种泡沫上升情景:稳定动态。对于较小的有效上覆载荷(≤11kPa),稳定的上升之后是动态的上升(据我们所知,以前没有得到证明)。最终导致气泡释放到水柱中。较高的有效上覆载荷只会导致气泡上升,而气泡上升会在海底以下经常观察到的天然气层停止。气体层位的深度增加,而气泡上升速度随着上覆负荷的增加而降低。结果表明,气泡迁移的情景主要由内部气泡压力控制,内部气泡压力定义了气泡与周围孔隙水之间的溶质交换。预测泥泞沉积物中气泡上升的情景将进一步允许估算CH 4向大气的排放,并评估由于气泡上升而引起的水生沉积物有效机械性能的变化。
更新日期:2019-05-23
down
wechat
bug