Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Optomechanics with one-dimensional gallium phosphide photonic crystal cavities
Optica ( IF 8.4 ) Pub Date : 2019-04-30 , DOI: 10.1364/optica.6.000577 Katharina Schneider , Yannick Baumgartner , Simon Hönl , Pol Welter , Herwig Hahn , Dalziel J. Wilson , Lukas Czornomaz , Paul Seidler
Optica ( IF 8.4 ) Pub Date : 2019-04-30 , DOI: 10.1364/optica.6.000577 Katharina Schneider , Yannick Baumgartner , Simon Hönl , Pol Welter , Herwig Hahn , Dalziel J. Wilson , Lukas Czornomaz , Paul Seidler
Gallium phosphide offers an attractive combination of a high refractive index ( for vacuum wavelengths up to 4 μm) and a wide electronic bandgap (2.26 eV), enabling optical cavities with small mode volumes and low two-photon absorption at telecommunication wavelengths. Heating due to strongly confined light fields is therefore greatly reduced. Here, we investigate the benefits of these properties for cavity optomechanics. Utilizing a recently developed fabrication scheme based on direct wafer bonding, we realize integrated one-dimensional photonic crystal cavities made of gallium phosphide with optical quality factors as high as . We optimize their design to couple the optical eigenmode at via radiation pressure to a co-localized mechanical mode with a frequency of 3 GHz, yielding sideband-resolved devices. The high vacuum optomechanical coupling rate () permits amplification of the mechanical mode into the so-called mechanical lasing regime with input power as low as . The observation of mechanical lasing implies a multiphoton cooperativity of , an important threshold for the realization of quantum state transfer protocols. Because of the reduced thermo-optic resonance shift, optomechanically induced transparency can be detected at room temperature even in non-sideband-resolved devices in addition to the normally observed optomechanically induced absorption. Considering that GaP is also piezoelectric, these results establish GaP as an attractive material for future electro–opto-mechanical systems.
中文翻译:
具有一维磷化镓光子晶体腔的光力学
磷化镓提供了高折射率的诱人组合(适用于高达4μm的真空波长)和宽的电子带隙(2.26 eV),从而实现了具有小模量的光腔,并且在电信波长下的双光子吸收率低。因此,大大减少了由于强烈限制的光场而产生的热量。在这里,我们研究了这些特性对腔体光力学的好处。利用最近开发的基于直接晶圆键合的制造方案,我们实现了由磷化镓制成的集成一维光子晶体腔,其光学品质因数高达。我们优化他们的设计以耦合光学本征模通过辐射压力达到频率为3 GHz的共定位机械模式,从而产生了边带分辨器件。高真空光机耦合率()允许将机械模式放大到所谓的机械激射状态,输入功率低至 。机械激光的观察暗示了多光子的协同作用。,这是实现量子状态转移协议的重要门槛。由于减少了热光共振位移,因此,除了通常观察到的光机械感应吸收之外,即使在非边带分辨的设备中,也可以在室温下检测光机械感应的透明性。考虑到GaP也是压电的,这些结果使GaP成为了未来机电系统的诱人材料。
更新日期:2019-05-20
中文翻译:
具有一维磷化镓光子晶体腔的光力学
磷化镓提供了高折射率的诱人组合(适用于高达4μm的真空波长)和宽的电子带隙(2.26 eV),从而实现了具有小模量的光腔,并且在电信波长下的双光子吸收率低。因此,大大减少了由于强烈限制的光场而产生的热量。在这里,我们研究了这些特性对腔体光力学的好处。利用最近开发的基于直接晶圆键合的制造方案,我们实现了由磷化镓制成的集成一维光子晶体腔,其光学品质因数高达。我们优化他们的设计以耦合光学本征模通过辐射压力达到频率为3 GHz的共定位机械模式,从而产生了边带分辨器件。高真空光机耦合率()允许将机械模式放大到所谓的机械激射状态,输入功率低至 。机械激光的观察暗示了多光子的协同作用。,这是实现量子状态转移协议的重要门槛。由于减少了热光共振位移,因此,除了通常观察到的光机械感应吸收之外,即使在非边带分辨的设备中,也可以在室温下检测光机械感应的透明性。考虑到GaP也是压电的,这些结果使GaP成为了未来机电系统的诱人材料。