Advances in Colloid and Interface Science ( IF 15.9 ) Pub Date : 2019-04-27 , DOI: 10.1016/j.cis.2019.04.005 Peyman Irajizad , Sina Nazifi , Hadi Ghasemi
Icephobic surfaces have a critical footprint on human daily lives ranging from aviation systems and infrastructures to energy systems, but creation of these surfaces for low-temperature applications remains elusive. Non-wetting, liquid-infused and hydrated surfaces have inspired routes for development of icephobic surfaces. However, high freezing temperature, high ice adhesion strength and subsequent ice accretion, low mechanical durability, and high production cost have restricted their practical applications. In this review, we provide a comprehensive definition for icephobicity through thermodynamics, heat transfer and mechanics of ice/water-material interface and elucidate physic-based routes through which nano-scale could help to achieve exceptional icephobic surfaces. Based on conservation laws, mathematical models are developed that accurately predict ice growth rate on various substrates and wind conditions. Through physics of fracture at ice-icephobic material interface, we cast a standard method for ice adhesion measurement that has the potential to eliminate discrepancies between reported ice adhesion from different laboratories. To assure long-time performance of icephobic surfaces, durability metrics need to be defined. We provide standard methods to examine mechanical, chemical, and environmental durability of icephobic surfaces. In the developed comprehensive framework on icephobicity in this review, performance of state-of-the-art icephobic surfaces are compared and main deficiencies in this field are highlighted.
中文翻译:
憎冰表面:定义和优点
憎冰表面在从航空系统,基础设施到能源系统的人类日常生活中具有至关重要的足迹,但是为低温应用而创建这些表面仍然遥不可及。不润湿,注入液体和水合的表面启发了开发憎冰表面的途径。然而,高的冷冻温度,高的冰粘附强度和随后的冰积聚,低的机械耐久性以及高的生产成本限制了它们的实际应用。在这篇综述中,我们通过热力学,传热和冰/水-材料界面的力学机制为憎冰性提供了一个全面的定义,并阐明了基于物理的途径,纳米尺度可以帮助实现优异的憎冰表面。根据保护法,建立了数学模型,可以准确预测各种基质和风况下的冰增长速度。通过疏冰-疏冰材料界面处的破裂物理现象,我们铸造了一种用于冰粘附力测量的标准方法,该方法有可能消除来自不同实验室的报道的冰粘附力之间的差异。为确保防冰表面的长期性能,需要定义耐久性指标。我们提供标准方法来检查疏冰表面的机械,化学和环境耐久性。在这篇综述中,在已开发的关于憎冰性的综合框架中,比较了最先进的憎冰表面的性能,并强调了该领域的主要缺陷。通过疏冰-疏冰材料界面处的破裂物理现象,我们铸造了一种用于冰粘附力测量的标准方法,该方法有可能消除来自不同实验室的报道的冰粘附力之间的差异。为确保防冰表面的长期性能,需要定义耐久性指标。我们提供标准方法来检查疏冰表面的机械,化学和环境耐久性。在这篇综述中,在已开发的关于憎冰性的综合框架中,比较了最先进的憎冰表面的性能,并强调了该领域的主要缺陷。通过疏冰-疏冰材料界面处的破裂物理现象,我们铸造了一种用于冰粘附力测量的标准方法,该方法有可能消除来自不同实验室的报道的冰粘附力之间的差异。为确保防冰表面的长期性能,需要定义耐久性指标。我们提供标准方法来检查疏冰表面的机械,化学和环境耐久性。在这篇综述中,在已开发的关于憎冰性的综合框架中,比较了最先进的憎冰表面的性能,并强调了该领域的主要缺陷。为确保防冰表面的长期性能,需要定义耐久性指标。我们提供标准方法来检查疏冰表面的机械,化学和环境耐久性。在这篇综述中,在已开发的关于憎冰性的综合框架中,比较了最先进的憎冰表面的性能,并强调了该领域的主要缺陷。为确保防冰表面的长期性能,需要定义耐久性指标。我们提供标准方法来检查疏冰表面的机械,化学和环境耐久性。在这篇综述中,在已开发的关于憎冰性的综合框架中,比较了最先进的憎冰表面的性能,并强调了该领域的主要缺陷。