Energy Storage Materials ( IF 18.9 ) Pub Date : 2019-04-25 , DOI: 10.1016/j.ensm.2019.04.025 Zhao Ding , Yan Lu , Ling Li , Leon Shaw
A nano-LiBH4 + nano-MgH2 mixture which can reversibly release and absorb ∼5.0 wt% H2 at 265 °C is synthesized via a new processing method, termed as Ball Milling with Aerosol Spraying (BMAS) established in this study. The reversible storage capacity of ∼5.0 wt% H2 is the highest one ever reported for the LiBH4 + MgH2 system at temperature ≤265 °C. It is found that the unusually high reversible hydrogen storage is accomplished through two parallel reaction pathways. One is nano-LiBH4 decomposes to form Li2B12H12 and H2 first and then Li2B12H12 reacts with MgH2 to form MgB2, LiH and H2. The other is nano-MgH2 decomposes to form Mg and H2 first and then Mg reacts with LiBH4 to form MgB2, LiH and H2. These reaction pathways become possible because of the presence of nano-LiBH4 and nano-MgH2 and their intimate mixing, enabled by the BMAS process. This study unambiguously shows that nano-engineering can overcome kinetics barriers for thermodynamically favorable systems like the LiBH4 + MgH2 mixture and even provides thermodynamic driving force to enhance hydrogen release at low temperature. The principle established in this study also opens up a new direction for investigating and improving the hydrogenation and dehydrogenation properties of many other systems containing multiple hydride components that have favorable thermodynamic properties for reversible hydrogen storage, but with limited kinetics.
中文翻译:
通过Nano-LiBH 4 + Nano-MgH 2系统的高可逆容量氢存储
通过一种新的加工方法合成了一种纳米LiBH 4 +纳米MgH 2混合物,该混合物可以在265°C下可逆地释放和吸收约5.0 wt%的H 2,该方法在该方法中被称为球磨与气溶胶喷涂(BMAS)。学习。约5.0 wt%H 2的可逆存储容量是有史以来报道的LiBH 4 + MgH 2系统在≤265°C的温度下的最高存储容量。发现通过两个平行的反应路径实现了异常高的可逆氢存储。一种是纳米LiBH 4先分解形成Li 2 B 12 H 12和H 2,然后分解成Li 2B 12 H 12与MgH 2反应形成MgB 2,LiH和H 2。另一个是纳米MgH 2首先分解形成Mg和H 2,然后Mg与LiBH 4反应形成MgB 2,LiH和H 2。由于存在纳米LiBH 4和纳米MgH 2以及它们的紧密混合(通过BMAS工艺实现),这些反应途径成为可能。这项研究明确表明,纳米工程可以克服热力学上有利的系统如LiBH 4 + MgH 2的动力学障碍。甚至提供热力学驱动力来增强低温下的氢释放。这项研究中确立的原理也为研究和改善许多其他包含多种氢化物成分的系统提供了可逆储氢的良好热力学性质,但动力学有限的氢化和脱氢性质,也为研究和改善其氢化和脱氢性质开辟了新的方向。