Nano Energy ( IF 16.8 ) Pub Date : 2019-04-24 , DOI: 10.1016/j.nanoen.2019.04.063 Dan Sun , Dan Huang , Haiyan Wang , Gui-Liang Xu , Xiaoyi Zhang , Rui Zhang , Yougen Tang , Deia Abd EI-Hady , Wael Alshitari , Abdullah Saad AL-Bogami , Khalil Amine , Minhua Shao
Metallic phase (1T) MoS2 has attracted enormous attention as an appealing energy storage material for batteries, supercapacitors, and catalysts. However, a facile fabrication method is lacking and the intensive understanding of its sodium storage mechanism is absent. Herein, ultrathin 1T MoS2 nanosheets (1–2 layers) are directly fabricated via and are investigated as an anode material for sodium-ion batteries. Interestingly, the as-prepared 1T MoS2 nanosheets demonstrate a high reversible capacity of 450 mAh g−1 at 50 mA g−1 and outstanding cycling stability with a high capacity retention ratio of 94% after 200 cycles at 1 A g−1, which is far superior to that of the 2H phase counterpart. Density function theory (DFT) calculations show that, in addition to significantly enhanced electronic conductivity, 1T MoS2 also possesses much more sodium philicity and faster Na atom mobility in comparison with the 2H phase. More importantly, as revealed by ex-situ Raman, in-situ X-ray diffraction, and DFT calculations, the 1T MoS2 is more capable of suppressing the dissolution of S species from the material structure compared with the 2H phase, leading to excellent cycling stability. The facile and easily scalable method as well as the deep mechanism analysis will provide a very important reference for the development of high-performance MoS2 anodes and other SIB electrode materials.
中文翻译:
1T MoS 2纳米片通过热驱动离子嵌入辅助剥离大体积MoS 2而具有出色的钠存储特性
金属相(1T)MoS 2作为一种有吸引力的电池,超级电容器和催化剂的储能材料受到了广泛的关注。然而,缺少一种简便的制造方法,并且缺乏对其钠储存机理的深入了解。在此,可直接通过制造超薄1T MoS 2纳米片(1-2层),并将其作为钠离子电池的负极材料进行研究。有趣的是,如此制备的1T MoS 2纳米片在50 mA g -1时显示出450 mAh g -1的高可逆容量,在1 A g -1下200次循环后具有出色的循环稳定性和94%的高容量保持率,远远优于2H相。密度泛函理论(DFT)计算表明,与2H相相比,除了显着提高电子电导率外,1T MoS 2还具有更多的钠亲和力和更快的Na原子迁移率。更重要的是,如异位拉曼光谱,原位X射线衍射和DFT计算所揭示的,与2H相相比,1T MoS 2能够更有效地抑制S物质从材料结构中溶解,循环稳定性。便捷,易于扩展的方法以及深入的机制分析将为高性能MoS 2的开发提供非常重要的参考。 阳极和其他SIB电极材料。