当前位置: X-MOL 学术J. Mater. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An efficient binary cathode interlayer for large-bandgap non-fullerene organic solar cells†
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2019-04-24 00:00:00 , DOI: 10.1039/c9ta02844g
Qingwu Yin 1, 2, 3, 4, 5 , Kai Zhang 1, 2, 3, 4, 5 , Long Zhang 1, 2, 3, 4, 5 , Jianchao Jia 1, 2, 3, 4, 5 , Xi Zhang 1, 2, 3, 4, 5 , Shuting Pang 1, 2, 3, 4, 5 , Qing-Hua Xu 6, 7, 8 , Chunhui Duan 1, 2, 3, 4, 5 , Fei Huang 1, 2, 3, 4, 5 , Yong Cao 1, 2, 3, 4, 5
Affiliation  

With the rapid development in large-bandgap non-fullerene acceptors, the energy level mismatch between the cathode interlayer (CIL) and the acceptors becomes severe. Herein, we carefully investigate the influence of interlayers with different lowest unoccupied molecular orbital (LUMO) levels on the performance of non-fullerene organic solar cells (OSCs), and observe that the energy level alignment between interlayers and acceptors plays a crucial role in achieving high open circuit voltage (Voc) and efficient charge extraction. Meanwhile, we find that the electron extraction and transport abilities of the CIL can be tuned by blending two CIL materials together with different ratios (named binary CIL). Based on these findings, efficient single-junction, double-junction and triple-junction homo-tandem OSCs based on a large-bandgap non-fullerene acceptor and binary CIL with an ultrahigh Voc of 1.22 V, 2.39 V and 3.21 V are demonstrated. The high Voc of tandem OSCs further ensure their application in solar-energy-driven water splitting. This study offers a new strategy to extend the application of CILs, and helps to develop efficient and thick CILs for printed large-area non-fullerene OSCs.

中文翻译:

适用于大带隙非富勒烯有机太阳能电池的高效二元阴极夹层

随着大带隙非富勒烯受体的迅速发展,阴极夹层(CIL)和受体之间的能级失配变得严重。在本文中,我们仔细研究了不同的最低未占据分子轨道(LUMO)水平的中间层对非富勒烯有机太阳能电池(OSC)性能的影响,并观察到中间层和受体之间的能级对齐在实现非富勒烯有机太阳能电池方面起着至关重要的作用。开路电压高(V oc)和高效的电荷提取。同时,我们发现可以通过将两种不同比例的CIL材料混合在一起(称为二元CIL)来调节CIL的电子提取和传输能力。基于这些发现,证明了基于带隙非富勒烯受体和具有1.22 V,2.39 V和3.21 V超高V oc的二元CIL的高效单结,双结和三结均串联OSC 。串联OSC的高V oc进一步确保了它们在太阳能驱动的水分解中的应用。这项研究提供了一种扩展CIL应用的新策略,并有助于开发用于印刷的大面积非富勒烯OSC的高效且厚实的CIL。
更新日期:2019-04-24
down
wechat
bug