Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Carbon Catabolite Repression in Yeast is Not Limited to Glucose.
Scientific Reports ( IF 3.8 ) Pub Date : 2019-04-24 , DOI: 10.1038/s41598-019-43032-w Kobi Simpson-Lavy 1 , Martin Kupiec 1
Scientific Reports ( IF 3.8 ) Pub Date : 2019-04-24 , DOI: 10.1038/s41598-019-43032-w Kobi Simpson-Lavy 1 , Martin Kupiec 1
Affiliation
Cells adapt their gene expression and their metabolism in response to a changing environment. Glucose represses expression of genes involved in the catabolism of other carbon sources in a process known as (carbon) catabolite repression. However, the relationships between "poor" carbon sources is less characterized. Here we show that in addition to the well-characterized glucose (and galactose) repression of ADH2 (alcohol dehydrogenase 2, required for efficient utilization of ethanol as a carbon source), ADH2 expression is also inhibited by acetate which is produced during ethanol catabolism. Thus, repressive regulation of gene expression occurs also between "poor" carbon sources. Acetate repression of ADH2 expression is via Haa1, independently from the well-characterized mechanism of AMPK (Snf1) activation of Adr1. The response to extracellular acetate is attenuated when all three acetate transporters (Ady2, Fps1 and Jen1) are deleted, but these deletions do not affect the acetate response resulting from growth with glucose or ethanol as the carbon source. Furthermore, genetic manipulation of the ethanol catabolic pathway affects this response. Together, our results show that acetate is sensed intracellularly and that a hierarchical control of carbon sources exists even for "poor" carbon sources.
中文翻译:
酵母中碳分解代谢物的抑制作用不仅限于葡萄糖。
细胞响应不断变化的环境而适应其基因表达和新陈代谢。葡萄糖在称为(碳)分解代谢物阻遏的过程中阻抑与其他碳源分解代谢有关的基因的表达。但是,“不良”碳源之间的关系较少被表征。在这里,我们表明,除了ADH2(有效利用乙醇作为碳源所需的酒精脱氢酶2)对葡萄糖(和半乳糖)的良好表征,ADH2的表达还受到乙醇分解代谢过程中产生的乙酸盐的抑制。因此,基因表达的抑制性调节也发生在“不良”碳源之间。Aha2的乙酸抑制是通过Haa1进行的,独立于AMPK(Snf1)激活Adr1的机制。当所有三个乙酸盐转运蛋白(Ady2,Fps1和Jen1)均被删除时,对细胞外乙酸盐的响应会减弱,但这些缺失不会影响以葡萄糖或乙醇为碳源生长而产生的乙酸盐响应。此外,乙醇分解代谢途径的遗传操作会影响该反应。在一起,我们的结果表明,乙酸盐在细胞内被感知,并且即使对于“贫乏”碳源,也存在对碳源的分级控制。
更新日期:2019-04-24
中文翻译:
酵母中碳分解代谢物的抑制作用不仅限于葡萄糖。
细胞响应不断变化的环境而适应其基因表达和新陈代谢。葡萄糖在称为(碳)分解代谢物阻遏的过程中阻抑与其他碳源分解代谢有关的基因的表达。但是,“不良”碳源之间的关系较少被表征。在这里,我们表明,除了ADH2(有效利用乙醇作为碳源所需的酒精脱氢酶2)对葡萄糖(和半乳糖)的良好表征,ADH2的表达还受到乙醇分解代谢过程中产生的乙酸盐的抑制。因此,基因表达的抑制性调节也发生在“不良”碳源之间。Aha2的乙酸抑制是通过Haa1进行的,独立于AMPK(Snf1)激活Adr1的机制。当所有三个乙酸盐转运蛋白(Ady2,Fps1和Jen1)均被删除时,对细胞外乙酸盐的响应会减弱,但这些缺失不会影响以葡萄糖或乙醇为碳源生长而产生的乙酸盐响应。此外,乙醇分解代谢途径的遗传操作会影响该反应。在一起,我们的结果表明,乙酸盐在细胞内被感知,并且即使对于“贫乏”碳源,也存在对碳源的分级控制。