当前位置:
X-MOL 学术
›
Small Methods
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Single Atoms on Graphene for Energy Storage and Conversion
Small Methods ( IF 10.7 ) Pub Date : 2019-04-16 , DOI: 10.1002/smtd.201800443 Linlin Zhang 1 , Yijing Wang 1 , Zhiqiang Niu 1 , Jun Chen 1
Small Methods ( IF 10.7 ) Pub Date : 2019-04-16 , DOI: 10.1002/smtd.201800443 Linlin Zhang 1 , Yijing Wang 1 , Zhiqiang Niu 1 , Jun Chen 1
Affiliation
Single atoms are attracting much attention in the field of energy conversion and storage due to their maximal atomic utilization, high efficiency, and good selectivity. Moreover, their unique electronic structure could improve the intrinsic activity of the active sites. However, the high surface free energy of single atoms inevitably results in their serious aggregation, leading to degraded catalytic activity and poor cycling life. To solve these issues, supports with high surface areas have to be developed to reduce loading density of single atoms and further decrease the surface free energy. Furthermore, engineering the active sites of these substrates can also regulate chemical coordination of single atoms, enhancing their catalytic performance. Owing to high surface area, excellent conductivity and adjustable surface properties, graphene is widely utilized to load atomic metal catalysts. In this review, the fabrication strategies and characterization methods of single atoms on graphene (SAG) are summarized first. Subsequently, the electrochemical applications of SAG on the oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, carbon dioxide reduction, and methane oxidation are discussed in detail. Finally, the future developments and prospects in fabrication and application of SAG are also discussed.
中文翻译:
石墨烯上的单个原子用于能量存储和转换
单原子由于其最大的原子利用率,高效率和良好的选择性而在能量转换和存储领域引起了广泛的关注。而且,它们独特的电子结构可以改善活性位点的固有活性。然而,单原子的高表面自由能不可避免地导致它们严重的聚集,从而导致催化活性降低和循环寿命变差。为了解决这些问题,必须开发具有高表面积的载体以降低单个原子的负载密度并进一步降低表面自由能。此外,工程化这些底物的活性位点还可以调节单个原子的化学配位,从而增强其催化性能。由于表面积大,电导率高和可调节的表面性能,石墨烯被广泛用于负载原子金属催化剂。本文综述了石墨烯(SAG)上单原子的制备策略和表征方法。随后,详细讨论了SAG在氧气还原反应,氧气分解反应,氢气分解反应,二氧化碳还原和甲烷氧化中的电化学应用。最后,还讨论了SAG的制造和应用的未来发展和前景。详细讨论了甲烷和甲烷的氧化。最后,还讨论了SAG的制造和应用的未来发展和前景。详细讨论了甲烷和甲烷的氧化。最后,还讨论了SAG的制造和应用的未来发展和前景。
更新日期:2019-04-16
中文翻译:
石墨烯上的单个原子用于能量存储和转换
单原子由于其最大的原子利用率,高效率和良好的选择性而在能量转换和存储领域引起了广泛的关注。而且,它们独特的电子结构可以改善活性位点的固有活性。然而,单原子的高表面自由能不可避免地导致它们严重的聚集,从而导致催化活性降低和循环寿命变差。为了解决这些问题,必须开发具有高表面积的载体以降低单个原子的负载密度并进一步降低表面自由能。此外,工程化这些底物的活性位点还可以调节单个原子的化学配位,从而增强其催化性能。由于表面积大,电导率高和可调节的表面性能,石墨烯被广泛用于负载原子金属催化剂。本文综述了石墨烯(SAG)上单原子的制备策略和表征方法。随后,详细讨论了SAG在氧气还原反应,氧气分解反应,氢气分解反应,二氧化碳还原和甲烷氧化中的电化学应用。最后,还讨论了SAG的制造和应用的未来发展和前景。详细讨论了甲烷和甲烷的氧化。最后,还讨论了SAG的制造和应用的未来发展和前景。详细讨论了甲烷和甲烷的氧化。最后,还讨论了SAG的制造和应用的未来发展和前景。