Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
High-energy quasi-solid-state supercapacitors enabled by carbon nanofoam from biowaste and high-voltage inorganic gel electrolyte
Carbon ( IF 10.5 ) Pub Date : 2019-08-01 , DOI: 10.1016/j.carbon.2019.04.056 Zhiwei Li , Song Gao , Hongyu Mi , Chenchen Lei , Chenchen Ji , Zongli Xie , Chang Yu , Jieshan Qiu
Carbon ( IF 10.5 ) Pub Date : 2019-08-01 , DOI: 10.1016/j.carbon.2019.04.056 Zhiwei Li , Song Gao , Hongyu Mi , Chenchen Lei , Chenchen Ji , Zongli Xie , Chang Yu , Jieshan Qiu
Abstract Focusing on major issues of carbon materials like insufficient capacitance and limited energy supply in supercapacitors, we propose the strategy of developing advanced carbon and high-voltage inorganic gel electrolyte to efficiently solve these challenges. Firstly, the architecture of self-doped carbon nanofoam (A-CS650) is fabricated utilizing naturally rich cotton stalk through a facile procedure, which demonstrates exceptional performance contributed by synergistic features of large surface area, hierarchical porosity and rich defects. A-CS650 presents gravimetric and volumetric capacitances up to 282 F g−1 and 234 F cm−3 at 0.5 A g−1, and a high-rate capacitance retention of 72.7% at a large rate of 100 A g−1. With increasing the mass loading to 20 mg cm−2, A-CS650 still retains good performance. Especially, by using unique CMC-Na/Na2SO4 gel electrolyte, 1.8 V A-CS650//A-CS650 quasi-solid-state supercapacitor, for the first time, is constructed, which displays an outstanding energy density of 22.6 Wh kg−1, greatly exceeding the value in PVA/KOH electrolyte (7.3 Wh kg−1). Besides, this device exhibits considerable stability over 10000 cycles (81.6% capacitance retention). The insight from this work verifies great adaptability of biowaste-derived carbons toward supercapacitors, and may open a new technical platform to develop portable energy systems.
中文翻译:
由生物垃圾和高压无机凝胶电解质中的碳纳米泡沫实现的高能准固态超级电容器
摘要 针对碳材料在超级电容器中容量不足和能量供应有限等主要问题,我们提出了开发先进的碳和高压无机凝胶电解质以有效解决这些挑战的策略。首先,自掺杂碳纳米泡沫(A-CS650)的结构是利用天然丰富的棉秆通过简单的程序制造的,该结构表现出由于大表面积、分级孔隙率和丰富缺陷的协同特性所贡献的卓越性能。A-CS650 在 0.5 A g-1 下的重量和体积电容高达 282 F g-1 和 234 F cm-3,在 100 A g-1 的大倍率下具有 72.7% 的高倍率电容保持率。随着质量负载增加到 20 mg cm−2,A-CS650 仍然保持良好的性能。尤其,采用独特的CMC-Na/Na2SO4凝胶电解质,首次构建了1.8 V A-CS650//A-CS650准固态超级电容器,其能量密度高达22.6 Wh kg-1,大大提高超过 PVA/KOH 电解液中的值 (7.3 Wh kg-1)。此外,该器件在 10000 次循环后表现出相当大的稳定性(电容保持率为 81.6%)。这项工作的见解验证了生物废物衍生的碳对超级电容器的巨大适应性,并可能为开发便携式能源系统开辟一个新的技术平台。该器件在 10000 次循环后表现出相当大的稳定性(81.6% 的电容保持率)。这项工作的见解验证了生物废物衍生的碳对超级电容器的巨大适应性,并可能为开发便携式能源系统开辟一个新的技术平台。该器件在 10000 次循环后表现出相当大的稳定性(81.6% 的电容保持率)。这项工作的见解验证了生物废物衍生的碳对超级电容器的巨大适应性,并可能为开发便携式能源系统开辟一个新的技术平台。
更新日期:2019-08-01
中文翻译:
由生物垃圾和高压无机凝胶电解质中的碳纳米泡沫实现的高能准固态超级电容器
摘要 针对碳材料在超级电容器中容量不足和能量供应有限等主要问题,我们提出了开发先进的碳和高压无机凝胶电解质以有效解决这些挑战的策略。首先,自掺杂碳纳米泡沫(A-CS650)的结构是利用天然丰富的棉秆通过简单的程序制造的,该结构表现出由于大表面积、分级孔隙率和丰富缺陷的协同特性所贡献的卓越性能。A-CS650 在 0.5 A g-1 下的重量和体积电容高达 282 F g-1 和 234 F cm-3,在 100 A g-1 的大倍率下具有 72.7% 的高倍率电容保持率。随着质量负载增加到 20 mg cm−2,A-CS650 仍然保持良好的性能。尤其,采用独特的CMC-Na/Na2SO4凝胶电解质,首次构建了1.8 V A-CS650//A-CS650准固态超级电容器,其能量密度高达22.6 Wh kg-1,大大提高超过 PVA/KOH 电解液中的值 (7.3 Wh kg-1)。此外,该器件在 10000 次循环后表现出相当大的稳定性(电容保持率为 81.6%)。这项工作的见解验证了生物废物衍生的碳对超级电容器的巨大适应性,并可能为开发便携式能源系统开辟一个新的技术平台。该器件在 10000 次循环后表现出相当大的稳定性(81.6% 的电容保持率)。这项工作的见解验证了生物废物衍生的碳对超级电容器的巨大适应性,并可能为开发便携式能源系统开辟一个新的技术平台。该器件在 10000 次循环后表现出相当大的稳定性(81.6% 的电容保持率)。这项工作的见解验证了生物废物衍生的碳对超级电容器的巨大适应性,并可能为开发便携式能源系统开辟一个新的技术平台。