当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Understanding the Roadmap for Electrochemical Reduction of CO2 to Multi-Carbon Oxygenates and Hydrocarbons on Copper-based Catalysts
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2019-04-15 , DOI: 10.1021/jacs.9b02124 Yao Zheng 1 , Anthony Vasileff 1 , Xianlong Zhou 1 , Yan Jiao 1 , Mietek Jaroniec 2 , Shi-Zhang Qiao 1
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2019-04-15 , DOI: 10.1021/jacs.9b02124 Yao Zheng 1 , Anthony Vasileff 1 , Xianlong Zhou 1 , Yan Jiao 1 , Mietek Jaroniec 2 , Shi-Zhang Qiao 1
Affiliation
Electrochemical reduction of CO2 to high-energy-density oxygenates and hydrocarbons beyond CO is important for long-term and large-scale renewable energy storage. However, the key step of the C-C bond formation needed for the generation of C2 products induces an additional barrier on the reaction. This inevitably creates larger overpotentials and greater variety of products as compared to the conversion of CO2 to C1 products. Therefore, an in-depth understanding of the catalytic mechanism is required for advancing the design of efficient electrocatalysts to control the reaction pathway to the desired products. Herein, we present a critical appraisal of reduction of CO2 to C2 products focusing on the connection between the fundamentals of reaction and efficient electrocatalysts. An in-depth discussion of the mechanistic aspects of various C2 reaction pathways on copper-based catalysts is presented together with consideration of practical factors under electrocatalytic operating conditions. By providing some typical examples illustrating the benefit of merging theoretical calculations, surface characterization, and electrochemical measurements, we try to address the key issues of the ongoing debate toward better understanding electrochemical reduction of CO2 at the atomic level and envisioning the roadmap for C2 products generation.
中文翻译:
了解在铜基催化剂上将 CO2 电化学还原为多碳氧化物和碳氢化合物的路线图
将 CO2 电化学还原为高能量密度的含氧化合物和除 CO 之外的碳氢化合物对于长期和大规模的可再生能源存储非常重要。然而,生成 C2 产物所需的 CC 键形成的关键步骤会在反应中引入额外的障碍。与将 CO2 转化为 C1 产品相比,这不可避免地会产生更大的超电势和更多种类的产品。因此,需要深入了解催化机理,以推进有效电催化剂的设计,以控制反应途径获得所需产物。在此,我们对将 CO2 还原为 C2 产物进行了批判性评估,重点是反应基本原理与高效电催化剂之间的联系。深入讨论了铜基催化剂上各种 C2 反应途径的机理方面,同时考虑了电催化操作条件下的实际因素。通过提供一些典型的例子来说明合并理论计算、表面表征和电化学测量的好处,我们试图解决正在进行的辩论中的关键问题,以更好地理解原子水平上 CO2 的电化学还原,并设想生成 C2 产品的路线图.
更新日期:2019-04-15
中文翻译:
了解在铜基催化剂上将 CO2 电化学还原为多碳氧化物和碳氢化合物的路线图
将 CO2 电化学还原为高能量密度的含氧化合物和除 CO 之外的碳氢化合物对于长期和大规模的可再生能源存储非常重要。然而,生成 C2 产物所需的 CC 键形成的关键步骤会在反应中引入额外的障碍。与将 CO2 转化为 C1 产品相比,这不可避免地会产生更大的超电势和更多种类的产品。因此,需要深入了解催化机理,以推进有效电催化剂的设计,以控制反应途径获得所需产物。在此,我们对将 CO2 还原为 C2 产物进行了批判性评估,重点是反应基本原理与高效电催化剂之间的联系。深入讨论了铜基催化剂上各种 C2 反应途径的机理方面,同时考虑了电催化操作条件下的实际因素。通过提供一些典型的例子来说明合并理论计算、表面表征和电化学测量的好处,我们试图解决正在进行的辩论中的关键问题,以更好地理解原子水平上 CO2 的电化学还原,并设想生成 C2 产品的路线图.