当前位置: X-MOL 学术Acc. Chem. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Toward the Targeted Design of Molecular Ferroelectrics: Modifying Molecular Symmetries and Homochirality
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2019-04-15 00:00:00 , DOI: 10.1021/acs.accounts.8b00677
Han-Yue Zhang 1 , Yuan-Yuan Tang 2 , Ping-Ping Shi 1 , Ren-Gen Xiong 1, 2
Affiliation  

Although the first ferroelectric discovered in 1920 is Rochelle salt, a typical molecular ferroelectric, the front-runners that have been extensively studied and widely used in diverse applications, such as memory elements, capacitors, sensors, and actuators, are inorganic ferroelectrics with excellent electrical, mechanical, and optical properties. With the increased concerns about the environment, energy, and cost, molecular ferroelectrics are becoming promising supplements for inorganic ferroelectrics. The unique advantages of high structural tunability and homochirality, which are unavailable in their inorganic counterparts, make molecular systems a good platform for manipulating ferroelectricity. Remarkably, based on the Neumann’s principle and the Curie symmetry principle defining the group-to-subgroup relationship, we have found some outstanding high-temperature molecular ferroelectrics, like diisopropylammonium bromide (DIPAB) with a large spontaneous polarization up to 23 μC/cm2 (Fu, D. W.; et al. Science 2013, 339, 425). However, their application potential is severely limited by the uniaxial nature, leading to major issues in finding proper substrates for thin-film growth and achieving high thin-film performance. Inspired by the commercialized inorganic ferroelectrics like Pb(Zr, Ti)O3 (PZT), where the multiaxial nature contributes greatly to the optimized ferroelectric and piezoelectric performance, developing high-temperature multiaxial molecular ferroelectrics is an imminent task.

中文翻译:

朝着分子铁电的目标设计:修改分子对称性和同手性。

尽管1920年发现的第一个铁电体是Rochelle盐,一种典型的分子铁电体,但经过广泛研究并广泛用于各种应用(例如存储元件,电容器,传感器和执行器)的先驱者是具有优异电学性能的无机铁电体。 ,机械和光学特性。随着人们对环境,能源和成本的日益关注,分子铁电体正成为无机铁电体的有前途的补充。高结构可调性和同质性的独特优势是无机系统无法获得的,这使得分子系统成为操纵铁电的良好平台。值得注意的是,基于Neumann原理和居里对称原理定义了组与子组之间的关系,2(福,DW;等人科学 2013339,425)。然而,它们的应用潜力受到单轴性质的严重限制,导致在寻找合适的薄膜生长用衬底和实现高薄膜性能方面存在重大问题。受诸如Pb(Zr,Ti)O 3(PZT)等商品化无机铁电材料的启发,多轴性质对优化铁电和压电性能做出了巨大贡献,开发高温多轴分子铁电材料是一项紧迫的任务。
更新日期:2019-04-15
down
wechat
bug