当前位置:
X-MOL 学术
›
Macromolecules
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Time–Temperature and Time–Water Superposition Principles Applied to Poly(allylamine)/Poly(acrylic acid) Complexes
Macromolecules ( IF 5.1 ) Pub Date : 2019-04-10 00:00:00 , DOI: 10.1021/acs.macromol.8b02512 Pilar C. Suarez-Martinez 1 , Piotr Batys 2 , Maria Sammalkorpi , Jodie L. Lutkenhaus 1
Macromolecules ( IF 5.1 ) Pub Date : 2019-04-10 00:00:00 , DOI: 10.1021/acs.macromol.8b02512 Pilar C. Suarez-Martinez 1 , Piotr Batys 2 , Maria Sammalkorpi , Jodie L. Lutkenhaus 1
Affiliation
The dynamic mechanical and rheological behavior of polyelectrolyte coacervates and complex precipitates is of interest for many applications ranging from health to personal care. Hydration is an important factor, but its effect on the dynamic properties of polyelectrolyte complexes (PECs) is poorly understood. Here, we describe the dynamic behavior of poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) complex precipitates at varying relative humidity values and temperatures using both dynamic mechanical analysis (DMA) and all-atom molecular dynamics simulations. To mirror the experimental system via simulation, the water content within the PEC is measured and used as the parameter of interest rather than relative humidity. In the experimental DMA, the modulus decreases with both increasing water content and temperature. The data are superimposed into a super master hydrothermal curve using the time–temperature superposition principle and the time–water superposition principle for the first time. The temperature-dependent shift factor (aT) follows an Arrhenius relation, and the water-dependent shift factor (aW) follows a log-linear relation with the water content in the complex. These results suggest that both temperature and water affect the dynamics of the PEC by similar mechanisms over the range investigated. All-atom molecular dynamics simulations show that an increase in the water content and temperature leads to similar changes in the polyelectrolyte chain mobility with little effect on the number of intrinsic ion pairs, suggesting the validity of time–water and time–temperature superposition principles.
中文翻译:
时间-温度和时间-水叠加原理应用于聚(烯丙胺)/聚(丙烯酸)配合物
聚电解质凝聚层和复杂沉淀物的动态力学和流变行为对于从健康到个人护理的许多应用都是令人感兴趣的。水合是一个重要因素,但对水对聚电解质复合物(PECs)动力学性能的影响知之甚少。在这里,我们使用动态力学分析(DMA)和全原子分子动力学模拟,描述了聚(烯丙胺盐酸盐)(PAH)和聚(丙烯酸)(PAA)复合物在变化的相对湿度值和温度下的动力学行为。为了通过仿真对实验系统进行镜像,可以测量PEC中的水含量,并将其用作目标参数,而不是相对湿度。在实验DMA中,模量随水含量和温度的升高而降低。首次使用时间-温度叠加原理和时间-水叠加原理将数据叠加到超级主控水热曲线中。与温度有关的偏移因子(a T)遵循阿伦尼乌斯(Arrhenius)关系,而与水有关的移动因子(a W)与复合物中的水含量遵循对数线性关系。这些结果表明温度和水都通过研究范围内的类似机制影响PEC的动力学。全原子分子动力学模拟表明,水含量和温度的增加会导致聚电解质链迁移率发生类似的变化,而对本征离子对的数量影响很小,这表明时间-水和时间-温度叠加原理的有效性。
更新日期:2019-04-10
中文翻译:
时间-温度和时间-水叠加原理应用于聚(烯丙胺)/聚(丙烯酸)配合物
聚电解质凝聚层和复杂沉淀物的动态力学和流变行为对于从健康到个人护理的许多应用都是令人感兴趣的。水合是一个重要因素,但对水对聚电解质复合物(PECs)动力学性能的影响知之甚少。在这里,我们使用动态力学分析(DMA)和全原子分子动力学模拟,描述了聚(烯丙胺盐酸盐)(PAH)和聚(丙烯酸)(PAA)复合物在变化的相对湿度值和温度下的动力学行为。为了通过仿真对实验系统进行镜像,可以测量PEC中的水含量,并将其用作目标参数,而不是相对湿度。在实验DMA中,模量随水含量和温度的升高而降低。首次使用时间-温度叠加原理和时间-水叠加原理将数据叠加到超级主控水热曲线中。与温度有关的偏移因子(a T)遵循阿伦尼乌斯(Arrhenius)关系,而与水有关的移动因子(a W)与复合物中的水含量遵循对数线性关系。这些结果表明温度和水都通过研究范围内的类似机制影响PEC的动力学。全原子分子动力学模拟表明,水含量和温度的增加会导致聚电解质链迁移率发生类似的变化,而对本征离子对的数量影响很小,这表明时间-水和时间-温度叠加原理的有效性。