当前位置: X-MOL 学术Nat. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Distinguishing the sources of silica nanoparticles by dual isotopic fingerprinting and machine learning
Nature Communications ( IF 14.7 ) Pub Date : 2019-04-08 , DOI: 10.1038/s41467-019-09629-5
Xuezhi Yang , Xian Liu , Aiqian Zhang , Dawei Lu , Gang Li , Qinghua Zhang , Qian Liu , Guibin Jiang

One of the key shortcomings in the field of nanotechnology risk assessment is the lack of techniques capable of source tracing of nanoparticles (NPs). Silica is the most-produced engineered nanomaterial and also widely present in the natural environment in diverse forms. Here we show that inherent isotopic fingerprints offer a feasible approach to distinguish the sources of silica nanoparticles (SiO2 NPs). We find that engineered SiO2 NPs have distinct Si–O two-dimensional (2D) isotopic fingerprints from naturally occurring SiO2 NPs, due probably to the Si and O isotope fractionation and use of isotopically different materials during the manufacturing process of engineered SiO2 NPs. A machine learning model is developed to classify the engineered and natural SiO2 NPs with a discrimination accuracy of 93.3%. Furthermore, the Si–O isotopic fingerprints are even able to partly identify the synthetic methods and manufacturers of engineered SiO2 NPs.



中文翻译:

通过双重同位素指纹图谱和机器学习来区分二氧化硅纳米颗粒的来源

纳米技术风险评估领域的主要缺陷之一是缺乏能够追踪纳米颗粒(NPs)来源的技术。二氧化硅是最生产的工程纳米材料,并且也以多种形式广泛存在于自然环境中。在这里,我们表明固有的同位素指纹图谱提供了一种区分二氧化硅纳米颗粒(SiO 2 NPs)来源的可行方法。我们发现,工程化的SiO 2纳米颗粒具有不同的的SiO二维(2D)同位素指纹从天然存在的SiO 2纳米粒子,由于可能的Si和O的同位素分馏和期间的工程化的制造过程中使用的同位素不同的材料的SiO 2NP。开发了机器学习模型以对工程和天然SiO 2 NP进行分类,辨别精度为93.3%。此外,Si-O同位素指纹甚至能够部分鉴定合成的方法和工程SiO 2 NP的制造商。

更新日期:2019-04-08
down
wechat
bug