npj Computational Materials ( IF 9.4 ) Pub Date : 2019-04-05 , DOI: 10.1038/s41524-019-0180-5 Andrea E. Sand , Rafi Ullah , Alfredo A. Correa
The effects of incident energetic particles, and the modification of materials under irradiation, are governed by the mechanisms of energy losses of ions in matter. The complex processes affecting projectiles spanning many orders of magnitude in energy depend on both ion and electron interactions. Developing multi-scale modeling methods that correctly capture the relevant processes is crucial for predicting radiation effects in diverse conditions. In this work, we obtain channeling ion ranges for tungsten, a prototypical heavy ion, by explicitly simulating ion trajectories with a method that takes into account both the nuclear and the electronic stopping power. The electronic stopping power of self-ion irradiated tungsten is obtained from first-principles time-dependent density functional theory (TDDFT). Although the TDDFT calculations predict a lower stopping power than SRIM by a factor of three, our result shows very good agreement in a direct comparison with ion range experiments. These results demonstrate the validity of the TDDFT method for determining electronic energy losses of heavy projectiles, and in turn its viability for the study of radiation damage.
中文翻译:
重离子范围从第一性原理到电子动力学
入射的高能粒子的影响,以及辐射下材料的改性,受物质中离子能量损失的机理支配。影响弹丸能量的复杂过程跨越多个数量级,这取决于离子和电子的相互作用。开发正确捕捉相关过程的多尺度建模方法对于预测各种条件下的辐射效应至关重要。在这项工作中,我们通过使用一种同时考虑了核和电子停止功率的方法来明确地模拟离子轨迹,从而获得了钨(一种典型的重离子)的通道离子范围。从第一原理时变密度泛函理论(TDDFT)获得自离子辐照钨的电子停止能力。尽管TDDFT计算预测的阻止功率比SRIM低三倍,但我们的结果与离子范围实验直接比较显示出很好的一致性。这些结果证明了TDDFT方法在确定重型弹丸的电子能量损失方面的有效性,进而证明了其在辐射损伤研究中的可行性。