当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Anti‐Oxygen Leaking LiCoO2
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2019-04-05 , DOI: 10.1002/adfm.201901110 Soroosh Sharifi‐Asl 1 , Fernando A. Soto 2 , Tara Foroozan 1 , Mohammad Asadi 1 , Yifei Yuan 1, 3 , Ramasubramonian Deivanayagam 1 , Ramin Rojaee 1 , Boao Song 1 , Xuanxuan Bi 3 , Khalil Amine 3 , Jun Lu 3 , Amin Salehi‐khojin 1 , Perla B. Balbuena 2 , Reza Shahbazian‐Yassar 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2019-04-05 , DOI: 10.1002/adfm.201901110 Soroosh Sharifi‐Asl 1 , Fernando A. Soto 2 , Tara Foroozan 1 , Mohammad Asadi 1 , Yifei Yuan 1, 3 , Ramasubramonian Deivanayagam 1 , Ramin Rojaee 1 , Boao Song 1 , Xuanxuan Bi 3 , Khalil Amine 3 , Jun Lu 3 , Amin Salehi‐khojin 1 , Perla B. Balbuena 2 , Reza Shahbazian‐Yassar 1
Affiliation
LiCoO2 is a prime example of widely used cathodes that suffer from the structural/thermal instability issues that lead to the release of their lattice oxygen under nonequilibrium conditions and safety concerns in Li‐ion batteries. Here, it is shown that an atomically thin layer of reduced graphene oxide can suppress oxygen release from LixCoO2 particles and improve their structural stability. Electrochemical cycling, differential electrochemical mass spectroscopy, differential scanning calorimetry, and in situ heating transmission electron microscopy are performed to characterize the effectiveness of the graphene‐coating on the abusive tolerance of LixCoO2. Electrochemical cycling mass spectroscopy results suggest that oxygen release is hindered at high cutoff voltage cycling when the cathode is coated with reduced graphene oxide. Thermal analysis, in situ heating transmission electron microscopy, and electron energy loss spectroscopy results show that the reduction of Co species from the graphene‐coated samples is delayed when compared with bare cathodes. Finally, density functional theory and ab initio molecular dynamics calculations show that the rGO layers could suppress O2 formation more effectively due to the strong COcathode bond formation at the interface of rGO/LCO where low coordination oxygens exist. This investigation uncovers a reliable approach for hindering the oxygen release reaction and improving the thermal stability of battery cathodes.
中文翻译:
抗氧气泄漏的LiCoO2
LiCoO 2是广泛使用的阴极的一个典型例子,该阴极遭受结构/热不稳定性问题,导致在非平衡条件下释放其晶格氧,以及锂离子电池的安全性问题。在此,显示出还原性氧化石墨烯的原子薄层可以抑制Li x CoO 2粒子中的氧释放并提高其结构稳定性。进行了电化学循环,差示电化学质谱,差示扫描量热法和原位传热透射电子显微镜,以表征石墨烯涂层对Li x CoO 2的耐受性的有效性。。电化学循环质谱结果表明,当阴极涂有还原的氧化石墨烯时,在高截止电压循环下氧气释放受到阻碍。热分析,原位加热透射电子显微镜和电子能量损失谱结果表明,与裸露的阴极相比,石墨烯涂层样品中Co的还原反应延迟。最后,密度泛函理论和从头分子动力学计算表明,RGO层能抑制Ò 2有效地形成更由于强Ç Ò阴极在存在低配位氧的rGO / LCO界面处形成键。这项研究发现了一种可靠的方法,可以阻止氧气释放反应并改善电池阴极的热稳定性。
更新日期:2019-04-05
中文翻译:
抗氧气泄漏的LiCoO2
LiCoO 2是广泛使用的阴极的一个典型例子,该阴极遭受结构/热不稳定性问题,导致在非平衡条件下释放其晶格氧,以及锂离子电池的安全性问题。在此,显示出还原性氧化石墨烯的原子薄层可以抑制Li x CoO 2粒子中的氧释放并提高其结构稳定性。进行了电化学循环,差示电化学质谱,差示扫描量热法和原位传热透射电子显微镜,以表征石墨烯涂层对Li x CoO 2的耐受性的有效性。。电化学循环质谱结果表明,当阴极涂有还原的氧化石墨烯时,在高截止电压循环下氧气释放受到阻碍。热分析,原位加热透射电子显微镜和电子能量损失谱结果表明,与裸露的阴极相比,石墨烯涂层样品中Co的还原反应延迟。最后,密度泛函理论和从头分子动力学计算表明,RGO层能抑制Ò 2有效地形成更由于强Ç Ò阴极在存在低配位氧的rGO / LCO界面处形成键。这项研究发现了一种可靠的方法,可以阻止氧气释放反应并改善电池阴极的热稳定性。