当前位置:
X-MOL 学术
›
Cryst. Growth Des.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Self-Assembly of Monodispersed Carnosine Spherical Crystals in a Reverse Antisolvent Crystallization Process
Crystal Growth & Design ( IF 3.2 ) Pub Date : 2019-04-03 00:00:00 , DOI: 10.1021/acs.cgd.8b01818 Yanan Zhou 1, 2 , Jingkang Wang 1, 2 , Ting Wang 1 , Na Wang 1 , Yan Xiao 1 , Shuyi Zong 1 , Xin Huang 1, 2 , Hongxun Hao 1, 2
Crystal Growth & Design ( IF 3.2 ) Pub Date : 2019-04-03 00:00:00 , DOI: 10.1021/acs.cgd.8b01818 Yanan Zhou 1, 2 , Jingkang Wang 1, 2 , Ting Wang 1 , Na Wang 1 , Yan Xiao 1 , Shuyi Zong 1 , Xin Huang 1, 2 , Hongxun Hao 1, 2
Affiliation
Spherical crystallization is an effective way to increase particle size, raise bulk density, and improve flowability and compressibility of crystals with small sizes, especially needle-like and flake-like microcrystals. In this work, a reverse antisolvent crystallization method was used to obtain the spherical crystals of carnosine instead of commercially available needle-like carnosine material. Besides, the solubility of carnosine in a binary solvent mixture of water + ethanol was measured at temperatures ranging from 288.05 to 323.15 K by using a gravimetric method under atmospheric pressure to optimize this crystallization process and increase the yield of carnosine. On the basis of these thermodynamic data, single factor analysis in a reverse antisolvent crystallization process was performed, including carnosine aqueous solution concentration, feeding rate, volume ratio of solution to antisolvent, temperature, and stirring speed. Polarizing microscopy, particle size distributions, and in situ particle vision measurements were used to characterize and monitor the carnosine spherical crystals during the reverse antisolvent crystallization process. Finally, monodispersed, several hundred micrometer-sized carnosine spherical crystals with a higher bulk density (0.224 g/mL) and smaller repose angle (39°), which indicated better flowability, were successfully crystallized, and a feasible formation mechanism was proposed.
中文翻译:
反向反溶剂结晶过程中单分散肌肽球状晶体的自组装
球形结晶是增加粒径,提高堆积密度并改善小尺寸晶体(尤其是针状和片状微晶体)的流动性和可压缩性的有效方法。在这项工作中,使用逆反溶剂结晶法来获得肌肽的球形晶体,而不是商购的针状肌肽材料。此外,在大气压下使用重量分析法,在288.05至323.15 K的温度范围内,测定肌肽在水+乙醇的二元溶剂混合物中的溶解度,以优化该结晶过程并提高肌肽的收率。根据这些热力学数据,在反向反溶剂结晶过程中进行了单因素分析,包括肌肽水溶液的浓度,进料速度,溶液与抗溶剂的体积比,温度和搅拌速度。在反向反溶剂结晶过程中,使用偏光显微镜,粒度分布和原位粒子视觉测量来表征和监测肌肽球形晶体。最后,成功地结晶了具有高堆积密度(0.224 g / mL)和较小的休止角(39°)的单分散,数百微米大小的肌肽球形晶体,表明其流动性更好,并提出了可行的形成机理。并在反溶剂结晶过程中使用原位粒子视觉测量来表征和监测肌肽球形晶体。最后,成功地结晶了具有较高堆积密度(0.224 g / mL)和较小休止角(39°)的单分散,数百微米大小的肌肽球形晶体,表明其流动性较好,并提出了可行的形成机理。并在反溶剂结晶过程中使用原位粒子视觉测量来表征和监测肌肽球形晶体。最后,成功地结晶了具有较高堆积密度(0.224 g / mL)和较小休止角(39°)的单分散,数百微米大小的肌肽球形晶体,表明其流动性较好,并提出了可行的形成机理。
更新日期:2019-04-03
中文翻译:
反向反溶剂结晶过程中单分散肌肽球状晶体的自组装
球形结晶是增加粒径,提高堆积密度并改善小尺寸晶体(尤其是针状和片状微晶体)的流动性和可压缩性的有效方法。在这项工作中,使用逆反溶剂结晶法来获得肌肽的球形晶体,而不是商购的针状肌肽材料。此外,在大气压下使用重量分析法,在288.05至323.15 K的温度范围内,测定肌肽在水+乙醇的二元溶剂混合物中的溶解度,以优化该结晶过程并提高肌肽的收率。根据这些热力学数据,在反向反溶剂结晶过程中进行了单因素分析,包括肌肽水溶液的浓度,进料速度,溶液与抗溶剂的体积比,温度和搅拌速度。在反向反溶剂结晶过程中,使用偏光显微镜,粒度分布和原位粒子视觉测量来表征和监测肌肽球形晶体。最后,成功地结晶了具有高堆积密度(0.224 g / mL)和较小的休止角(39°)的单分散,数百微米大小的肌肽球形晶体,表明其流动性更好,并提出了可行的形成机理。并在反溶剂结晶过程中使用原位粒子视觉测量来表征和监测肌肽球形晶体。最后,成功地结晶了具有较高堆积密度(0.224 g / mL)和较小休止角(39°)的单分散,数百微米大小的肌肽球形晶体,表明其流动性较好,并提出了可行的形成机理。并在反溶剂结晶过程中使用原位粒子视觉测量来表征和监测肌肽球形晶体。最后,成功地结晶了具有较高堆积密度(0.224 g / mL)和较小休止角(39°)的单分散,数百微米大小的肌肽球形晶体,表明其流动性较好,并提出了可行的形成机理。