当前位置:
X-MOL 学术
›
Nanoscale Horiz.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Theory-guided materials design: two-dimensional MXenes in electro- and photocatalysis
Nanoscale Horizons ( IF 8.0 ) Pub Date : 2019-04-03 00:00:00 , DOI: 10.1039/c9nh00100j Albertus D. Handoko 1, 2, 3, 4, 5 , Stephan N. Steinmann 6, 7, 8, 9, 10 , Zhi Wei Seh 1, 2, 3, 4, 5
Nanoscale Horizons ( IF 8.0 ) Pub Date : 2019-04-03 00:00:00 , DOI: 10.1039/c9nh00100j Albertus D. Handoko 1, 2, 3, 4, 5 , Stephan N. Steinmann 6, 7, 8, 9, 10 , Zhi Wei Seh 1, 2, 3, 4, 5
Affiliation
Two-dimensional transition metal carbides and nitrides (MXenes) have made a significant impact on sustainable energy research in the fields of energy storage and conversion. Unlike short-term energy storage strategies (e.g. batteries and supercapacitors), catalytic conversion of simple molecules to value-added chemicals using renewable energy represents a more long-term solution to the world's energy crisis. Significant advances in density functional theory and low-cost computing in the past decade have enabled the generation of reliable materials data from fundamental physics equations. The paradigm shift towards theory-guided materials design is expected to enhance the catalyst discovery and development process by providing rational guidance to screen viable MXene catalysts more rapidly than an experimental-only approach. In this review, we aim to provide a critical appraisal of the latest theoretical and experimental work on MXenes in the fields of electro- and photocatalytic energy conversion, including relevant reactions involving hydrogen, oxygen, carbon dioxide and nitrogen molecules. In the process, we will also be pointing out current limitations in theoretical models, existing scientific gaps and future research directions for this field.
中文翻译:
理论指导的材料设计:电催化和光催化中的二维MXenes
二维过渡金属碳化物和氮化物(MXenes)对能量存储和转换领域的可持续能源研究产生了重大影响。与短期能量存储策略不同(例如,电池和超级电容器),使用可再生能源将简单分子催化转化为增值化学品代表了解决世界能源危机的更长期解决方案。在过去的十年中,密度泛函理论和低成本计算的重大进步使从基本物理方程式生成可靠的材料数据成为可能。通过提供比纯实验方法更快地筛选可行的MXene催化剂的合理指导,有望实现理论指导材料设计的范式转变,从而增强催化剂的发现和开发过程。在这篇评论中,我们旨在对电和光催化能量转换领域中有关MXene的最新理论和实验工作进行重要评估,包括涉及氢,氧,二氧化碳和氮分子。在此过程中,我们还将指出该领域在理论模型方面的局限性,存在的科学空白和未来的研究方向。
更新日期:2019-04-03
中文翻译:
理论指导的材料设计:电催化和光催化中的二维MXenes
二维过渡金属碳化物和氮化物(MXenes)对能量存储和转换领域的可持续能源研究产生了重大影响。与短期能量存储策略不同(例如,电池和超级电容器),使用可再生能源将简单分子催化转化为增值化学品代表了解决世界能源危机的更长期解决方案。在过去的十年中,密度泛函理论和低成本计算的重大进步使从基本物理方程式生成可靠的材料数据成为可能。通过提供比纯实验方法更快地筛选可行的MXene催化剂的合理指导,有望实现理论指导材料设计的范式转变,从而增强催化剂的发现和开发过程。在这篇评论中,我们旨在对电和光催化能量转换领域中有关MXene的最新理论和实验工作进行重要评估,包括涉及氢,氧,二氧化碳和氮分子。在此过程中,我们还将指出该领域在理论模型方面的局限性,存在的科学空白和未来的研究方向。