当前位置: X-MOL 学术Nat. Hum. Behav. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Causal understanding is not necessary for the improvement of culturally evolving technology.
Nature Human Behaviour ( IF 21.4 ) Pub Date : 2019-04-01 , DOI: 10.1038/s41562-019-0567-9
Maxime Derex 1, 2 , Jean-François Bonnefon 3 , Robert Boyd 4, 5 , Alex Mesoudi 1
Affiliation  

Bows and arrows, houses and kayaks are just a few examples of the highly optimized tools that humans have produced and used to colonize new environments1,2. Because there is much evidence that humans' cognitive abilities are unparalleled3,4, many believe that such technologies resulted from our superior causal reasoning abilities5-7. However, others have stressed that the high dimensionality of human technologies makes them very difficult to understand causally8. Instead, they argue that optimized technologies emerge through the retention of small improvements across generations without requiring understanding of how these technologies work1,9. Here we show that a physical artefact becomes progressively optimized across generations of social learners in the absence of explicit causal understanding. Moreover, we find that the transmission of causal models across generations has no noticeable effect on the pace of cultural evolution. The reason is that participants do not spontaneously create multidimensional causal theories but, instead, mainly produce simplistic models related to a salient dimension. Finally, we show that the transmission of these inaccurate theories constrains learners' exploration and has downstream effects on their understanding. These results indicate that complex technologies need not result from enhanced causal reasoning but, instead, can emerge from the accumulation of improvements made across generations.

中文翻译:

因果关系理解对于文化发展技术的改进不是必需的。

弓箭,房屋和皮划艇只是人类生产并用于殖民新环境的高度优化工具的几个例子1,2 ,。因为有许多证据表明人类的认知能力是无与伦比的3,4,所以许多人认为,此类技术是由我们卓越的因果推理能力5-7产生的。但是,其他人则强调,人类技术的高度维度使他们很难因果理解8。相反,他们认为,优化技术是通过保留几代人之间的小改进而出现的,而无需了解这些技术的工作方式[1,9]。在这里,我们表明,在缺乏明确因果关系理解的情况下,跨社会学习者的世代之间的人工制品逐渐得到了优化。而且,我们发现因果模型在几代人之间的传播对文化发展的速度没有显着影响。原因是参与者不会自发地创建多维因果理论,而是主要生成与显着维度相关的简化模型。最后,我们表明,这些不正确的理论的传播限制了学习者的探索,并对其学习产生了下游影响。这些结果表明,复杂的技术不一定来自因果推理的增强,而是可以通过世代相传的改进积累而出现。主要产生与显着维度有关的简化模型。最后,我们表明,这些不正确的理论的传播限制了学习者的探索,并对其学习产生了下游影响。这些结果表明,复杂的技术不一定来自因果推理的增强,而是可以通过世代相传的改进积累而出现。主要产生与显着维度有关的简化模型。最后,我们表明,这些不正确的理论的传播限制了学习者的探索,并对其学习产生了下游影响。这些结果表明,复杂的技术不一定来自因果推理的增强,而是可以通过世代相传的改进积累而出现。
更新日期:2019-05-16
down
wechat
bug