当前位置:
X-MOL 学术
›
ACS Appl. Nano Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Well-Defined N/S Co-Doped Nanocarbons from Sulfurized PAN-b-PBA Block Copolymers: Structure and Supercapacitor Performance
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2019-03-22 , DOI: 10.1021/acsanm.9b00340 Rui Yuan , Han Wang , Mingkang Sun , Krishnan Damodaran 1 , Eric Gottlieb , Maciej Kopeć , Karoline Eckhart , Sipei Li , Jay Whitacre , Krzysztof Matyjaszewski , Tomasz Kowalewski
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2019-03-22 , DOI: 10.1021/acsanm.9b00340 Rui Yuan , Han Wang , Mingkang Sun , Krishnan Damodaran 1 , Eric Gottlieb , Maciej Kopeć , Karoline Eckhart , Sipei Li , Jay Whitacre , Krzysztof Matyjaszewski , Tomasz Kowalewski
Affiliation
While nanocarbons doped with more than one heteroatom continue attracting growing interest owing to a wide range of applications, precise control of their nanostructure and porosity remains a major challenge. Herein, we report a new route to synthesize N/S co-doped nanocarbons with precise porosity control through introduction of sulfur into the synthesis copolymer-templated nitrogen-enriched carbons (CTNC). Sulfur served as both a heteroatom source and morphology stabilizing agent. The produced N/S co-doped nanocarbons showed interconnected pores with relatively high specific surface area (∼480 m2/g) and high heteroatom content (N, 8.2 atom %; S, 8.8 atom %). To demonstrate the dual benefits of sulfur stabilization (incorporation of heteroatoms and improved morphology control), such prepared nanocarbons were fabricated into supercapacitors with geometric capacitance (50 μF/cm2), well above the value observed for single N-doped carbon (33 μF/cm2). Importantly, linear relationship of mesopore size with block length of copolymer precursor was observed for N/S co-doped nanocarbons, allowing optimization of the mesopore size for supercapacitor applications. This new technique not only expands CTNC method from N-doping to N/S co-doping systems with excellent porosity control but also opens up new possibilities widely applicable to other PAN-based soft-templating systems.
中文翻译:
硫化PAN- b- PBA嵌段共聚物定义的N / S共掺杂纳米碳的定义:结构和超级电容器性能
尽管掺杂有一个以上杂原子的纳米碳由于其广泛的应用而引起了越来越多的兴趣,但对其纳米结构和孔隙率的精确控制仍然是一个重大挑战。在这里,我们报告了一种通过将硫引入到合成共聚物模板的富氮碳(CTNC)中来精确控制孔隙率的合成N / S共掺杂纳米碳的新途径。硫既是杂原子源又是形态稳定剂。产生的N / S共掺杂纳米碳表现出相互连通的孔,这些孔具有相对较高的比表面积(约480 m 2/ g)和高杂原子含量(N,8.2原子%; S,8.8原子%)。为了证明硫稳定的双重好处(掺入杂原子和改进形态控制),将这种制备的纳米碳制成具有几何电容(50μF/ cm 2)的超级电容器,该电容远高于单个N掺杂碳的观察值(33μF)。 / cm 2)。重要的是,对于N / S共掺杂的纳米碳,观察到了中孔尺寸与共聚物前体嵌段长度的线性关系,从而可以优化超级电容器应用的中孔尺寸。这项新技术不仅将CTNC方法从N掺杂扩展到具有优异孔隙率控制的N / S共掺杂系统,而且还开辟了广泛适用于其他基于PAN的软模板系统的新可能性。
更新日期:2019-04-01
中文翻译:
硫化PAN- b- PBA嵌段共聚物定义的N / S共掺杂纳米碳的定义:结构和超级电容器性能
尽管掺杂有一个以上杂原子的纳米碳由于其广泛的应用而引起了越来越多的兴趣,但对其纳米结构和孔隙率的精确控制仍然是一个重大挑战。在这里,我们报告了一种通过将硫引入到合成共聚物模板的富氮碳(CTNC)中来精确控制孔隙率的合成N / S共掺杂纳米碳的新途径。硫既是杂原子源又是形态稳定剂。产生的N / S共掺杂纳米碳表现出相互连通的孔,这些孔具有相对较高的比表面积(约480 m 2/ g)和高杂原子含量(N,8.2原子%; S,8.8原子%)。为了证明硫稳定的双重好处(掺入杂原子和改进形态控制),将这种制备的纳米碳制成具有几何电容(50μF/ cm 2)的超级电容器,该电容远高于单个N掺杂碳的观察值(33μF)。 / cm 2)。重要的是,对于N / S共掺杂的纳米碳,观察到了中孔尺寸与共聚物前体嵌段长度的线性关系,从而可以优化超级电容器应用的中孔尺寸。这项新技术不仅将CTNC方法从N掺杂扩展到具有优异孔隙率控制的N / S共掺杂系统,而且还开辟了广泛适用于其他基于PAN的软模板系统的新可能性。