当前位置:
X-MOL 学术
›
ACS Photonics
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Single-Crystalline Gold Nanodisks on WS2 Mono- and Multilayers for Strong Coupling at Room Temperature
ACS Photonics ( IF 6.5 ) Pub Date : 2019-03-28 00:00:00 , DOI: 10.1021/acsphotonics.8b01766 Mathias Geisler , Ximin Cui 1 , Jianfang Wang 1 , Tomas Rindzevicius , Lene Gammelgaard , Bjarke S. Jessen , P. A. D. Gonçalves , Francesco Todisco , Peter Bøggild , Anja Boisen , Martijn Wubs , N. Asger Mortensen , Sanshui Xiao , Nicolas Stenger
ACS Photonics ( IF 6.5 ) Pub Date : 2019-03-28 00:00:00 , DOI: 10.1021/acsphotonics.8b01766 Mathias Geisler , Ximin Cui 1 , Jianfang Wang 1 , Tomas Rindzevicius , Lene Gammelgaard , Bjarke S. Jessen , P. A. D. Gonçalves , Francesco Todisco , Peter Bøggild , Anja Boisen , Martijn Wubs , N. Asger Mortensen , Sanshui Xiao , Nicolas Stenger
Affiliation
Engineering light–matter interactions up to the strong-coupling regime at room temperature is one of the cornerstones of modern nanophotonics. Achieving this goal could enable new platforms for potential applications such as quantum information processing, quantum light sources, and even quantum metrology. Layered materials like transition metal dichalcogenides (TMDCs) and, in particular, tungsten disulfide (WS2), possess strong dipole moments which are comparable to semiconductor-based quantum dots, but the former also exhibit large exciton binding energies, thereby making TMDCs suitable candidates for exploring light–matter interactions at ambient conditions. Furthermore, the combination of TMDCs with plasmonic nanocavities, which tightly confine light down to nanometer scale, has recently emerged as a suitable platform for achieving strong coupling between plasmons and excitons at room temperature. Here, we use ultrathin single-crystalline gold nanodisks featuring large in-plane electric dipole moments aligned with the exciton’s dipole moments in monolayer WS2. By performing both scattering and reflection spectroscopy, we demonstrate strong coupling at room temperature with a Rabi splitting of ∼108 meV. In addition, when the plasmonic resonance of these nanodisks is coupled with few-layer WS2, a Rabi splitting of ∼175 meV is observed, with a major increase of 62% relative to the monolayer configuration. Our results therefore suggest that ultrathin single-crystalline gold nanodisks coupled to WS2 constitute an attractive platform to explore light–matter interactions in the strong-coupling regime.
中文翻译:
WS 2单层和多层上的单晶金纳米磁盘可在室温下实现强耦合
在室温下直至强耦合状态的工程光-物质相互作用是现代纳米光子学的基石之一。实现这一目标可以为潜在应用提供新平台,例如量子信息处理,量子光源,甚至量子计量学。层状材料,例如过渡金属二硫化碳(TMDC),尤其是二硫化钨(WS 2)具有很强的偶极矩,可与基于半导体的量子点相媲美,但前者也表现出大的激子结合能,从而使TMDC成为探索环境条件下光与物质相互作用的合适候选者。此外,TMDC与等离激元纳米腔的结合将光限制在纳米级以下,最近已成为一种合适的平台,可在室温下实现等离激元和激子之间的强耦合。在这里,我们使用超薄单晶金纳米盘,其特征在于大平面内电偶极矩与单层WS 2中激子的偶极矩对齐。通过执行散射和反射光谱,我们证明了在室温下具有很强的Rabi分裂〜108 meV的耦合。此外,当这些纳米盘的等离子体共振与几层WS 2耦合时,观察到〜175 meV的Rabi分裂,相对于单层结构,其主要增加了62%。因此,我们的结果表明,与WS 2耦合的超薄单晶金纳米盘构成了一个有吸引力的平台,可以探索强耦合机制中的光-物质相互作用。
更新日期:2019-03-28
中文翻译:
WS 2单层和多层上的单晶金纳米磁盘可在室温下实现强耦合
在室温下直至强耦合状态的工程光-物质相互作用是现代纳米光子学的基石之一。实现这一目标可以为潜在应用提供新平台,例如量子信息处理,量子光源,甚至量子计量学。层状材料,例如过渡金属二硫化碳(TMDC),尤其是二硫化钨(WS 2)具有很强的偶极矩,可与基于半导体的量子点相媲美,但前者也表现出大的激子结合能,从而使TMDC成为探索环境条件下光与物质相互作用的合适候选者。此外,TMDC与等离激元纳米腔的结合将光限制在纳米级以下,最近已成为一种合适的平台,可在室温下实现等离激元和激子之间的强耦合。在这里,我们使用超薄单晶金纳米盘,其特征在于大平面内电偶极矩与单层WS 2中激子的偶极矩对齐。通过执行散射和反射光谱,我们证明了在室温下具有很强的Rabi分裂〜108 meV的耦合。此外,当这些纳米盘的等离子体共振与几层WS 2耦合时,观察到〜175 meV的Rabi分裂,相对于单层结构,其主要增加了62%。因此,我们的结果表明,与WS 2耦合的超薄单晶金纳米盘构成了一个有吸引力的平台,可以探索强耦合机制中的光-物质相互作用。