当前位置:
X-MOL 学术
›
Biomaterials
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Poly(propylene fumarate)-based materials: Synthesis, functionalization, properties, device fabrication and biomedical applications.
Biomaterials ( IF 12.8 ) Pub Date : 2019-03-28 , DOI: 10.1016/j.biomaterials.2019.03.038 Zhongyu Cai 1 , Yong Wan 2 , Matthew L Becker 3 , Yun-Ze Long 4 , David Dean 5
Biomaterials ( IF 12.8 ) Pub Date : 2019-03-28 , DOI: 10.1016/j.biomaterials.2019.03.038 Zhongyu Cai 1 , Yong Wan 2 , Matthew L Becker 3 , Yun-Ze Long 4 , David Dean 5
Affiliation
Poly(propylene fumarate) (PPF) is a biodegradable polymer that has been investigated extensively over the last three decades. It has led many scientists to synthesize and fabricate a variety of PPF-based materials for biomedical applications due to its controllable mechanical properties, tunable degradation and biocompatibility. This review provides a comprehensive overview of the progress made in improving PPF synthesis, resin formulation, crosslinking, device fabrication and post polymerization modification. Further, we highlight the influence of these parameters on biodegradation, biocompatibility, and their use in a number of regenerative medicine applications, especially bone tissue engineering. In particular, the use of 3D printing techniques for the fabrication of PPF-based scaffolds is extensively reviewed. The recent invention of a ring-opening polymerization method affords precise control of PPF molecular mass, molecular mass distribution (ƉM) and viscosity. Low ƉM facilitates time-certain resorption of 3D printed structures. Novel post-polymerization and post-printing functionalization methods have accelerated the expansion of biomedical applications that utilize PPF-based materials. Finally, we shed light on evolving uses of PPF-based materials for orthopedics/bone tissue engineering and other biomedical applications, including its use as a hydrogel for bioprinting.
中文翻译:
聚(富马酸丙二酯)基材料:合成,功能化,特性,器件制造和生物医学应用。
聚富马酸丙二酯(PPF)是一种可生物降解的聚合物,在过去的三十年中进行了广泛的研究。由于其可控的机械性能,可调节的降解性和生物相容性,它已导致许多科学家合成和制造用于生物医学的各种基于PPF的材料。这篇综述提供了在改善PPF合成,树脂配方,交联,器件制造和聚合后改性方面取得的进展的全面概述。此外,我们重点介绍了这些参数对生物降解,生物相容性的影响,以及它们在许多再生医学应用(尤其是骨组织工程)中的使用。特别地,广泛地综述了使用3D打印技术制造基于PPF的支架。开环聚合方法的最新发明提供了对PPF分子量,分子量分布(ƉM)和粘度的精确控制。低ƉM有助于在时间上确定3D打印结构的吸收。新型的后聚合和印刷后功能化方法加速了利用基于PPF的材料的生物医学应用的扩展。最后,我们阐明了基于PPF的材料在整形外科/骨组织工程和其他生物医学应用中的不断发展的应用,包括其用作生物打印的水凝胶的用途。新型的后聚合和印刷后功能化方法加速了利用基于PPF的材料的生物医学应用的扩展。最后,我们阐明了基于PPF的材料在整形外科/骨组织工程和其他生物医学应用中的不断发展的用途,包括其用作生物打印的水凝胶的用途。新型的后聚合和印刷后功能化方法加速了利用基于PPF的材料的生物医学应用的扩展。最后,我们阐明了基于PPF的材料在整形外科/骨组织工程和其他生物医学应用中的不断发展的应用,包括其用作生物打印的水凝胶的用途。
更新日期:2019-03-28
中文翻译:
聚(富马酸丙二酯)基材料:合成,功能化,特性,器件制造和生物医学应用。
聚富马酸丙二酯(PPF)是一种可生物降解的聚合物,在过去的三十年中进行了广泛的研究。由于其可控的机械性能,可调节的降解性和生物相容性,它已导致许多科学家合成和制造用于生物医学的各种基于PPF的材料。这篇综述提供了在改善PPF合成,树脂配方,交联,器件制造和聚合后改性方面取得的进展的全面概述。此外,我们重点介绍了这些参数对生物降解,生物相容性的影响,以及它们在许多再生医学应用(尤其是骨组织工程)中的使用。特别地,广泛地综述了使用3D打印技术制造基于PPF的支架。开环聚合方法的最新发明提供了对PPF分子量,分子量分布(ƉM)和粘度的精确控制。低ƉM有助于在时间上确定3D打印结构的吸收。新型的后聚合和印刷后功能化方法加速了利用基于PPF的材料的生物医学应用的扩展。最后,我们阐明了基于PPF的材料在整形外科/骨组织工程和其他生物医学应用中的不断发展的应用,包括其用作生物打印的水凝胶的用途。新型的后聚合和印刷后功能化方法加速了利用基于PPF的材料的生物医学应用的扩展。最后,我们阐明了基于PPF的材料在整形外科/骨组织工程和其他生物医学应用中的不断发展的用途,包括其用作生物打印的水凝胶的用途。新型的后聚合和印刷后功能化方法加速了利用基于PPF的材料的生物医学应用的扩展。最后,我们阐明了基于PPF的材料在整形外科/骨组织工程和其他生物医学应用中的不断发展的应用,包括其用作生物打印的水凝胶的用途。