Nature Photonics ( IF 32.3 ) Pub Date : 2019-03-25 , DOI: 10.1038/s41566-019-0392-8 Anton V. Zasedatelev , Anton V. Baranikov , Darius Urbonas , Fabio Scafirimuto , Ullrich Scherf , Thilo Stöferle , Rainer F. Mahrt , Pavlos G. Lagoudakis
Active optical elements with ever smaller footprint and lower energy consumption are central to modern photonics. The drive for miniaturization, speed and efficiency, with the concomitant volume reduction of the optically active area, has led to the development of devices that harness strong light–matter interactions. By managing the strength of light–matter coupling to exceed losses, quasiparticles, called exciton-polaritons, are formed that combine the properties of the optical fields with the electronic excitations of the active material. By making use of polaritons in inorganic semiconductor microcavities, all-optical transistor functionality was observed, albeit at cryogenic temperatures1. Here, we replace inorganic semiconductors with a ladder-type polymer in an optical microcavity and realize room-temperature operation of a polariton transistor through vibron-mediated stimulated polariton relaxation. We demonstrate net gain of ~10 dB μm−1, sub-picosecond switching time, cascaded amplification and all-optical logic operation at ambient conditions.
中文翻译:
室温有机极化晶体管
有源光学元件具有更小的占位面积和更低的能耗,是现代光子学的核心。追求微型化,提高速度和提高效率的同时,光学有源区的体积也随之减少,从而导致了利用强光-物质相互作用的设备的开发。通过控制光-物质耦合的强度使其超过损耗,形成了称为激子-极化子的准粒子,这些粒子将光场的特性与活性物质的电子激发相结合。通过在无机半导体微腔中使用极化子,尽管在低温下1,也观察到了全光学晶体管的功能1。在这里,我们在光微腔中用梯型聚合物代替无机半导体,并通过荧光子介导的受激极化子弛豫实现极化子晶体管的室温工作。我们证明了在环境条件下的〜10 dBμm -1的净增益,亚皮秒的切换时间,级联放大和全光逻辑操作。