Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Tuning CO2 conversion product selectivity of metal organic frameworks derived hybrid carbon photoelectrocatalytic reactors
Carbon ( IF 10.5 ) Pub Date : 2019-07-01 , DOI: 10.1016/j.carbon.2019.03.043 James W. Maina , Cristina Pozo-Gonzalo , Jürg A. Schütz , Jiangting Wang , Ludovic F. Dumée
Carbon ( IF 10.5 ) Pub Date : 2019-07-01 , DOI: 10.1016/j.carbon.2019.03.043 James W. Maina , Cristina Pozo-Gonzalo , Jürg A. Schütz , Jiangting Wang , Ludovic F. Dumée
Abstract Photo/electrocatalytic conversion of carbon dioxide (CO2), has potential to address the adverse environmental impact of global warming. However, it is challenging to control the reactions to yield a specific product, and most catalyst produce a mixture of product that may include methanol, carbon monoxide (CO), methane among others. Metal organic frameworks (MOFs) derived carbon catalysts have potential to facilitate selective CO2 conversion, owing to their regular microporous structure, in addition to enhanced chemical stability and electrical conductivity as compared to the precursor MOFs. However, there are no established techniques for immobilizing these catalysts directly on the surface a conductive substrate, without the need of polymer adhesives. Here, MOF-derived hybrid carbon photoelectrocatalytic reactors were successfully fabricated on the surface of macroporous metal support, by direct carbonization of the metal supported MOF membranes. The carbonization resulted in a dramatic improvement in electrocatalytic performance, with samples carbonized at 700 °C producing up to 9 times higher methanol yield as compared to non-carbonized membranes. The product selectivity could also be tuned from methanol, to CO or a mixture of both, by switching between electrocatalysis and photocatalysis. This work opens route for the development of robust metal supported carbonized MOF-based catalysts, for energy conversion applications.
中文翻译:
调节金属有机骨架衍生的混合碳光电催化反应器的 CO2 转化产物选择性
摘要 二氧化碳 (CO2) 的光/电催化转化具有解决全球变暖对环境不利影响的潜力。然而,控制反应以产生特定产物是具有挑战性的,并且大多数催化剂产生的产物混合物可能包括甲醇、一氧化碳 (CO)、甲烷等。与前体 MOF 相比,金属有机框架 (MOF) 衍生的碳催化剂由于其规则的微孔结构,除了具有增强的化学稳定性和导电性之外,还具有促进选择性 CO2 转化的潜力。然而,没有成熟的技术将这些催化剂直接固定在导电基材的表面上,而不需要聚合物粘合剂。这里,通过直接碳化金属负载的 MOF 膜,在大孔金属载体表面成功制备了 MOF 衍生的混合碳光电催化反应器。碳化导致电催化性能的显着提高,与非碳化膜相比,样品在 700°C 下碳化产生的甲醇产量高出 9 倍。通过在电催化和光催化之间切换,还可以将产物选择性从甲醇调节到 CO 或两者的混合物。这项工作为开发用于能量转换应用的坚固的金属负载碳化 MOF 基催化剂开辟了道路。碳化导致电催化性能的显着提高,与非碳化膜相比,样品在 700°C 下碳化产生的甲醇产量高出 9 倍。通过在电催化和光催化之间切换,还可以将产物选择性从甲醇调节到 CO 或两者的混合物。这项工作为开发用于能量转换应用的坚固的金属负载碳化 MOF 基催化剂开辟了道路。碳化导致电催化性能的显着提高,与非碳化膜相比,样品在 700°C 下碳化产生的甲醇产量高出 9 倍。通过在电催化和光催化之间切换,还可以将产物选择性从甲醇调节到 CO 或两者的混合物。这项工作为开发用于能量转换应用的坚固的金属负载碳化 MOF 基催化剂开辟了道路。
更新日期:2019-07-01
中文翻译:
调节金属有机骨架衍生的混合碳光电催化反应器的 CO2 转化产物选择性
摘要 二氧化碳 (CO2) 的光/电催化转化具有解决全球变暖对环境不利影响的潜力。然而,控制反应以产生特定产物是具有挑战性的,并且大多数催化剂产生的产物混合物可能包括甲醇、一氧化碳 (CO)、甲烷等。与前体 MOF 相比,金属有机框架 (MOF) 衍生的碳催化剂由于其规则的微孔结构,除了具有增强的化学稳定性和导电性之外,还具有促进选择性 CO2 转化的潜力。然而,没有成熟的技术将这些催化剂直接固定在导电基材的表面上,而不需要聚合物粘合剂。这里,通过直接碳化金属负载的 MOF 膜,在大孔金属载体表面成功制备了 MOF 衍生的混合碳光电催化反应器。碳化导致电催化性能的显着提高,与非碳化膜相比,样品在 700°C 下碳化产生的甲醇产量高出 9 倍。通过在电催化和光催化之间切换,还可以将产物选择性从甲醇调节到 CO 或两者的混合物。这项工作为开发用于能量转换应用的坚固的金属负载碳化 MOF 基催化剂开辟了道路。碳化导致电催化性能的显着提高,与非碳化膜相比,样品在 700°C 下碳化产生的甲醇产量高出 9 倍。通过在电催化和光催化之间切换,还可以将产物选择性从甲醇调节到 CO 或两者的混合物。这项工作为开发用于能量转换应用的坚固的金属负载碳化 MOF 基催化剂开辟了道路。碳化导致电催化性能的显着提高,与非碳化膜相比,样品在 700°C 下碳化产生的甲醇产量高出 9 倍。通过在电催化和光催化之间切换,还可以将产物选择性从甲醇调节到 CO 或两者的混合物。这项工作为开发用于能量转换应用的坚固的金属负载碳化 MOF 基催化剂开辟了道路。