当前位置: X-MOL 学术Chem. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Role of Polyacrylic Acid (PAA) Binder on the Solid Electrolyte Interphase in Silicon Anodes
Chemistry of Materials ( IF 7.2 ) Pub Date : 2019-03-19 00:00:00 , DOI: 10.1021/acs.chemmater.8b05020
Pritesh Parikh 1 , Mahsa Sina 1 , Abhik Banerjee 1 , Xuefeng Wang 1 , Macwin Savio D’Souza 1 , Jean-Marie Doux 1 , Erik A. Wu 1 , Osman Y. Trieu 1 , Yongbai Gong 1 , Qian Zhou 2 , Kent Snyder 2 , Ying Shirley Meng 1
Affiliation  

To obtain high-energy density Li-ion batteries for the next-generation storage devices, silicon anodes provide a viable option because of their high theoretical capacity, low operating potential versus lithium (Li), and environmental abundance. However, the silicon electrode suffers from large volume expansion (∼300%) that leads to mechanical failure, cracks in the SEI (solid electrolyte interphase), and loss of contact with the current collector, all of which severely impede the capacity retention. In this respect, the choice of binders, carbon, electrolyte, and the morphology of the silicon itself plays a critical role in improving capacity retention. Of specific mention is the role of binders where a carboxylic acid-heavy group, PAA (polyacrylic acid), has been demonstrated to have better cycling capacity retention as compared to CMC (carboxy methyl cellulose). Traditionally, the role of binders has been proposed as a soft matrix backbone that allows volume expansion of the anode while preserving its morphology. However, the effect of the binder on both the rate of formation of SEI species across cycles and its distribution around the silicon nanoparticles has not been completely investigated. Herein, we use two different binders (PAA and CMC) coupled with LiFSI (lithium bis(fluorosulfonyl)imide)/EMI-FSI (1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide) ionic liquid as the electrolyte to understand the effect of binder on the SEI. Using STEM-EDX (scanning transmission electron microscopy–energy-dispersive X-ray spectroscopy), EELS (electron energy loss spectroscopy), and XPS (X-ray photoelectron spectroscopy), we discuss the evolution of the SEI on the Si electrode for both binders. Our results indicate that a faster decomposition of FSI with a PAA binder leads to LiF (lithium fluoride) formation, making F unavailable for subsequent SEI formation cycles. This allows further decomposition of the LiFSI salt to sulfates and sulfides which form a crucial component of the SEI around silicon nanoparticles after 100 cycles in the PAA binder-based system. The dual effects of faster consumption of F to form LiF together with the distribution of passivating sulfides in the SEI could allow for better capacity retention in the PAA binder system as compared to that with CMC.

中文翻译:

聚丙烯酸(PAA)粘结剂在硅阳极中固体电解质界面上的作用

为了获得用于下一代存储设备的高能量密度锂离子电池,硅阳极提供了一个可行的选择,因为它们的理论容量高,相对于锂(Li)的工作电势低且环境丰富。但是,硅电极的体积膨胀大(〜300%),会导致机械故障,SEI(固体电解质中间相)破裂以及与集流体失去接触,所有这些都会严重影响容量保持率。在这方面,粘合剂,碳,电解质的选择以及硅本身的形态在提高容量保持率方面起着至关重要的作用。特别要提及的是粘合剂的作用,其中重羧酸基团PAA(聚丙烯酸)与CMC(羧甲基纤维素)相比,已证明具有更好的循环容量保持能力。传统上,已经提出粘合剂的作用是作为软基质骨架,其允许阳极的体积膨胀同时保留其形态。然而,尚未完全研究粘合剂对整个循环中SEI物种形成速率及其在硅纳米颗粒周围分布的影响。在本文中,我们使用两种不同的粘合剂(PAA和CMC)与LiFSI(双(氟磺酰基)酰亚胺锂)/ EMI-FSI(1-乙基-3-甲基咪唑双(氟磺酰基)酰亚胺)离子液体作为电解质来了解其效果。在SEI上的粘合剂。使用STEM-EDX(扫描透射电子显微镜–能量色散X射线光谱法),EELS(电子能量损失光谱法),和XPS(X射线光电子能谱),我们讨论了两种粘合剂在Si电极上SEI的演变。我们的结果表明FSI的分解速度更快使用PAA粘合剂会导致形成LiF(氟化锂),从而使F 无法用于后续的SEI形成循环。这允许在基于PAA粘合剂的系统中经过100次循环后,LiFSI盐进一步分解为硫酸盐和硫化物,形成围绕硅纳米粒子的SEI的关键成分。的F更快消费的双重效应-与钝化在SEI硫化物可以允许在PAA粘结剂系统更好的容量保持率相比,与CMC分布在一起形成的LiF。
更新日期:2019-03-19
down
wechat
bug