当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Identification of Phase Control of Carbon‐Confined Nb2O5 Nanoparticles toward High‐Performance Lithium Storage
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2019-03-18 , DOI: 10.1002/aenm.201802695
Jiashen Meng 1 , Qiu He 2 , Linhan Xu 3 , Xingcai Zhang 4 , Fang Liu 1 , Xuanpeng Wang 1 , Qi Li 1 , Xiaoming Xu 1 , Guobin Zhang 1 , Chaojiang Niu 1 , Zhitong Xiao 1 , Ziang Liu 1 , Zizhong Zhu 3 , Yan Zhao 2 , Liqiang Mai 1
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2019-03-18 , DOI: 10.1002/aenm.201802695
Jiashen Meng 1 , Qiu He 2 , Linhan Xu 3 , Xingcai Zhang 4 , Fang Liu 1 , Xuanpeng Wang 1 , Qi Li 1 , Xiaoming Xu 1 , Guobin Zhang 1 , Chaojiang Niu 1 , Zhitong Xiao 1 , Ziang Liu 1 , Zizhong Zhu 3 , Yan Zhao 2 , Liqiang Mai 1
Affiliation
![]() |
Niobium pentoxides (Nb2O5) have attracted extensive interest for ultrafast lithium‐ion batteries due to their impressive rate/capacity performance and high safety as intercalation anodes. However, the intrinsic insulating properties and unrevealed mechanisms of complex phases limit their further applications. Here, a facile and efficient method is developed to construct three typical carbon‐confined Nb2O5 (TT‐Nb2O5@C, T‐Nb2O5@C, and H‐Nb2O5@C) nanoparticles via a mismatched coordination reaction during the solvothermal process and subsequent controlled heat treatment, and different phase effects are investigated on their lithium storage properties on the basis of both experimental and computational approaches. The thin carbon coating and nanoscale size can endow Nb2O5 with a high surface area, high conductivity, and short diffusion length. As a proof‐of‐concept application, when employed as LIB anode materials, the resulting T‐Nb2O5@C nanoparticles display higher rate capability and better cycling stability as compared with TT‐Nb2O5@C and H‐Nb2O5@C nanoparticles. Furthermore, a synergistic effect is investigated and demonstrated between fast diffusion pathways and stable hosts in T‐Nb2O5 for ultrafast and stable lithium storage, based on crystal structure analysis, in situ X‐ray diffraction analysis, and density functional theoretical calculations. Therefore, the proposed synthetic strategy and obtained deep insights will stimulate the development of Nb2O5 for ultrafast and long‐life LIBs.
中文翻译:
碳载Nb2O5纳米粒子对高性能锂存储的相控识别
五氧化二铌(Nb 2 O 5)由于其令人印象深刻的速率/容量性能以及作为嵌入阳极的高安全性,已引起了超快锂离子电池的广泛兴趣。但是,复杂相的固有绝缘性能和未揭示的机理限制了它们的进一步应用。在这里,开发了一种简便有效的方法来构造三种典型的碳约束Nb 2 O 5(TT‐Nb 2 O 5 @ C,T‐Nb 2 O 5 @C和H‐Nb 2 O 5溶剂热过程和随后的受控热处理过程中,通过错配配位反应产生的纳米颗粒,并基于实验和计算方法研究了其锂存储特性的不同相效应。薄的碳涂层和纳米级尺寸可以赋予Nb 2 O 5高表面积,高导电率和较短的扩散长度。作为概念验证应用,当用作LIB阳极材料时,与TT-Nb 2 O 5 @C和H-Nb相比,所得的T-Nb 2 O 5 @C纳米颗粒显示出更高的速率能力和更好的循环稳定性。2 ø 5@C纳米粒子。此外,基于晶体结构分析,原位X射线衍射分析和密度泛函理论计算,研究并证明了T-Nb 2 O 5中快速扩散途径与稳定主体之间的协同效应,以实现超快和稳定的锂存储。因此,拟议的合成策略和获得的深刻见识将刺激Nb 2 O 5用于超快和长寿命LIB的发展。
更新日期:2019-03-18
中文翻译:

碳载Nb2O5纳米粒子对高性能锂存储的相控识别
五氧化二铌(Nb 2 O 5)由于其令人印象深刻的速率/容量性能以及作为嵌入阳极的高安全性,已引起了超快锂离子电池的广泛兴趣。但是,复杂相的固有绝缘性能和未揭示的机理限制了它们的进一步应用。在这里,开发了一种简便有效的方法来构造三种典型的碳约束Nb 2 O 5(TT‐Nb 2 O 5 @ C,T‐Nb 2 O 5 @C和H‐Nb 2 O 5溶剂热过程和随后的受控热处理过程中,通过错配配位反应产生的纳米颗粒,并基于实验和计算方法研究了其锂存储特性的不同相效应。薄的碳涂层和纳米级尺寸可以赋予Nb 2 O 5高表面积,高导电率和较短的扩散长度。作为概念验证应用,当用作LIB阳极材料时,与TT-Nb 2 O 5 @C和H-Nb相比,所得的T-Nb 2 O 5 @C纳米颗粒显示出更高的速率能力和更好的循环稳定性。2 ø 5@C纳米粒子。此外,基于晶体结构分析,原位X射线衍射分析和密度泛函理论计算,研究并证明了T-Nb 2 O 5中快速扩散途径与稳定主体之间的协同效应,以实现超快和稳定的锂存储。因此,拟议的合成策略和获得的深刻见识将刺激Nb 2 O 5用于超快和长寿命LIB的发展。