当前位置: X-MOL 学术Acta Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Machine learning assisted design of high entropy alloys with desired property
Acta Materialia ( IF 8.3 ) Pub Date : 2019-05-01 , DOI: 10.1016/j.actamat.2019.03.010
Cheng Wen , Yan Zhang , Changxin Wang , Dezhen Xue , Yang Bai , Stoichko Antonov , Lanhong Dai , Turab Lookman , Yanjing Su

Abstract We formulate a materials design strategy combining a machine learning (ML) surrogate model with experimental design algorithms to search for high entropy alloys (HEAs) with large hardness in a model Al-Co-Cr-Cu-Fe-Ni system. We fabricated several alloys with hardness 10% higher than the best value in the original training dataset via only seven experiments. We find that a strategy using both the compositions and descriptors based on a knowledge of the properties of HEAs, outperforms that merely based on the compositions alone. This strategy offers a recipe to rapidly optimize multi-component systems, such as bulk metallic glasses and superalloys, towards desired properties.

中文翻译:

具有所需性能的高熵合金的机器学习辅助设计

摘要 我们制定了一种材料设计策略,将机器学习 (ML) 代理模型与实验设计算法相结合,以在模型 Al-Co-Cr-Cu-Fe-Ni 系统中搜索具有大硬度的高熵合金 (HEAs)。我们仅通过七次实验就制造了几种合金,其硬度比原始训练数据集中的最佳值高 10%。我们发现,基于对 HEA 属性的了解,同时使用组合物和描述符的策略优于仅基于组合物的策略。该策略提供了一种快速优化多组分系统的方法,例如块状金属玻璃和高温合金,以达到所需的性能。
更新日期:2019-05-01
down
wechat
bug