当前位置: X-MOL 学术Sci. Total Environ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Unravelling mesosulfuron-methyl phytotoxicity and metabolism-based herbicide resistance in Alopecurus aequalis: Insight into regulatory mechanisms using proteomics
Science of the Total Environment ( IF 8.2 ) Pub Date : 2019-03-07 , DOI: 10.1016/j.scitotenv.2019.03.089
Ning Zhao , Yanyan Yan , Yongli Luo , Nan Zou , Weitang Liu , Jinxin Wang

Non-target-site based resistance (NTSR), a poorly understood multigenic trait, has evolved as the greatest threat to crop production worldwide, by endowing weed plants an unpredictable pattern of resistance to herbicides. Our recent work with multiple-herbicide-resistant shortawn foxtail (Alopecurus aequalis Sobol.) biotype has preliminary indicated that cytochrome P450s-involved enhanced rate of mesosulfuron-methyl metabolism may involve in the NTSR. Here by further determining the differences in glutathione S-transferase (GST) activity and uptake and metabolic rates of mesosulfuron between resistant (R) and susceptible (S) A. aequalis plants, and associating them with endogenous differently regulated proteins (DEPs) identified from combinational proteomics analyses, we provided direct evidences on the enhanced herbicide degradation in resistant plants. Subsequently, the physiological phenotypes of photosynthesis, chlorophyll fluorescence, and antioxidation were compared between R and S plants and linked with correlative DEPs, indicating a series of key pathways including solar energy capture, photosynthetic electron transport, redox homeostasis, carbon fixation, photorespiration, and reactive oxygen species scavenging in susceptible plants were broken or severely damaged by mesosulfuron stress. In comparison, resistant plants have evolved enhanced herbicide degradation to minimize the accumulation of mesosulfuron and protect the photosynthesis and ascorbate-glutathione cycle against the adverse effects of chemical injury, giving A. aequalis plants a NTSR phenotype. Additionally, three key proteins respectively annotated as esterase, GST, and glucosyltransferase were identified and enabled as potential transcriptional markers for quick diagnosing the metabolic mesosulfuron resistance in A. aequalis species.



中文翻译:

解开甲磺胺磺隆-甲基和植物毒性基于代谢除草剂抗性在看麦娘:洞察使用蛋白质组学调节机制

通过赋予杂草植物不可预测的除草剂抗性,非目标位抗性(NTSR)已被广泛理解为对全球农作物生产的最大威胁,这是一种鲜为人知的多基因性状。我们最近对耐多除草剂的短尾狐尾草(Alopecurus aequalis Sobol。)生物型的研究初步表明,细胞色素P450参与的中硫磺隆甲基代谢速率的提高可能与NTSR有关。在这里,通过进一步确定抗性(R)和易感性(S)水母不食动杆菌之间的谷胱甘肽S-转移酶(GST)活性以及中硫磺隆的摄取和代谢率之间的差异植物,并将它们与从组合蛋白质组学分析中鉴定出的内源性不同调节蛋白(DEP)相关联,我们为抗性植物中增强的除草剂降解提供了直接的证据。随后,比较了R和S植物的光合作用,叶绿素荧光和抗氧化的生理表型,并与相关的DEP相关联,表明了一系列关键途径,包括太阳能捕获,光合电子传输,氧化还原稳态,碳固定,光呼吸和中磺磺隆胁迫破坏了易感植物中的活性氧,使之破坏或严重受损。相比下,A.麦娘植物NTSR表型。另外,鉴定了三个分别标注为酯酶,GST和葡糖基转移酶的关键蛋白,并使其成为潜在的转录标记,可用于快速诊断马兜铃属物种的代谢性中硫磺隆抗性。

更新日期:2019-03-09
down
wechat
bug