Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Dynamic Adsorption of Ions into Like-Charged Nanospace: A Dynamic Density Functional Theory Study
Langmuir ( IF 3.7 ) Pub Date : 2019-03-06 00:00:00 , DOI: 10.1021/acs.langmuir.9b00088 Leying Qing 1 , Yu Li 1 , Weiqiang Tang 1 , Duo Zhang 2 , Yongsheng Han 3, 4 , Shuangliang Zhao 1
Langmuir ( IF 3.7 ) Pub Date : 2019-03-06 00:00:00 , DOI: 10.1021/acs.langmuir.9b00088 Leying Qing 1 , Yu Li 1 , Weiqiang Tang 1 , Duo Zhang 2 , Yongsheng Han 3, 4 , Shuangliang Zhao 1
Affiliation
The adsorption processes of ions into charged nanospace are associated with many practical applications. Whereas a large number of microporous materials have been prepared toward efficient adsorption of ions from solutions, theoretical models that allow for capturing the characteristics of ion dynamic adsorption into like-charged nanopores are still few. The difficulty originates from the overlapping of electric potentials inside the pores. Herein, a theoretical model is proposed by incorporating dynamic density functional theory with modified Poisson equation for investigating the dynamic adsorption of ions into like-charged nanoslits. This model is rationalized by comparing the theoretical predictions with corresponding simulation results. Afterward, by analyzing the adsorption dynamics, we show that the overlapping effect is associated with the pore size, ion bulk concentration, and surface charge density, and it plays a dominant role in the coupling between the total adsorption amount of ions and total adsorption time. Specifically, with weak overlapping effect, the total adsorption amount is intuitively proportional to the total adsorption time; however, when the overlapping effect is strong, the total adsorption amount may be inversely proportional to the total adsorption time, indicating that both high adsorption amount and short adsorption time can be achieved simultaneously. This work provides a meaningful insight toward the rational design and optimization of microporous materials for efficient ion adsorption.
中文翻译:
离子在带电荷的纳米空间中的动态吸附:动态密度泛函理论研究
离子在带电纳米空间中的吸附过程与许多实际应用有关。尽管已经准备了许多微孔材料以有效地从溶液中吸附离子,但是仍然允许将离子动态吸附的特征捕获到带相同电荷的纳米孔中的理论模型仍然很少。困难源于孔内电势的重叠。在此,通过将动态密度泛函理论与改进的泊松方程相结合,提出了一种理论模型,用于研究离子在带相同电荷的纳米缝隙中的动态吸附。通过将理论预测与相应的仿真结果进行比较,可以使该模型合理化。然后,通过分析吸附动力学,我们表明,重叠效应与孔径,离子体积浓度和表面电荷密度有关,并且在离子的总吸附量和总吸附时间之间的耦合中起主导作用。具体地说,由于重叠效果弱,因此总吸附量在直观上与总吸附时间成正比。然而,当重叠效果强时,总吸附量可能与总吸附时间成反比,这表明高吸附量和短吸附时间可以同时实现。这项工作为有效设计离子吸附的微孔材料的合理设计和优化提供了有意义的见解。它在离子的总吸附量和总吸附时间之间的耦合中起主要作用。具体地说,由于重叠效果弱,因此总吸附量在直观上与总吸附时间成正比。然而,当重叠效果强时,总吸附量可能与总吸附时间成反比,这表明高吸附量和短吸附时间可以同时实现。这项工作为有效设计离子吸附的微孔材料的合理设计和优化提供了有意义的见解。它在离子的总吸附量和总吸附时间之间的耦合中起主要作用。具体地说,由于重叠效果弱,因此总吸附量在直观上与总吸附时间成正比。然而,当重叠效果强时,总吸附量可能与总吸附时间成反比,这表明高吸附量和短吸附时间可以同时实现。这项工作为有效设计离子吸附的微孔材料的合理设计和优化提供了有意义的见解。当重叠效果强时,总吸附量可能与总吸附时间成反比,表明可以同时实现高吸附量和短吸附时间。这项工作为有效设计离子吸附的微孔材料的合理设计和优化提供了有意义的见解。当重叠效果强时,总吸附量可能与总吸附时间成反比,表明可以同时实现高吸附量和短吸附时间。这项工作为有效设计离子吸附的微孔材料的合理设计和优化提供了有意义的见解。
更新日期:2019-03-06
中文翻译:
离子在带电荷的纳米空间中的动态吸附:动态密度泛函理论研究
离子在带电纳米空间中的吸附过程与许多实际应用有关。尽管已经准备了许多微孔材料以有效地从溶液中吸附离子,但是仍然允许将离子动态吸附的特征捕获到带相同电荷的纳米孔中的理论模型仍然很少。困难源于孔内电势的重叠。在此,通过将动态密度泛函理论与改进的泊松方程相结合,提出了一种理论模型,用于研究离子在带相同电荷的纳米缝隙中的动态吸附。通过将理论预测与相应的仿真结果进行比较,可以使该模型合理化。然后,通过分析吸附动力学,我们表明,重叠效应与孔径,离子体积浓度和表面电荷密度有关,并且在离子的总吸附量和总吸附时间之间的耦合中起主导作用。具体地说,由于重叠效果弱,因此总吸附量在直观上与总吸附时间成正比。然而,当重叠效果强时,总吸附量可能与总吸附时间成反比,这表明高吸附量和短吸附时间可以同时实现。这项工作为有效设计离子吸附的微孔材料的合理设计和优化提供了有意义的见解。它在离子的总吸附量和总吸附时间之间的耦合中起主要作用。具体地说,由于重叠效果弱,因此总吸附量在直观上与总吸附时间成正比。然而,当重叠效果强时,总吸附量可能与总吸附时间成反比,这表明高吸附量和短吸附时间可以同时实现。这项工作为有效设计离子吸附的微孔材料的合理设计和优化提供了有意义的见解。它在离子的总吸附量和总吸附时间之间的耦合中起主要作用。具体地说,由于重叠效果弱,因此总吸附量在直观上与总吸附时间成正比。然而,当重叠效果强时,总吸附量可能与总吸附时间成反比,这表明高吸附量和短吸附时间可以同时实现。这项工作为有效设计离子吸附的微孔材料的合理设计和优化提供了有意义的见解。当重叠效果强时,总吸附量可能与总吸附时间成反比,表明可以同时实现高吸附量和短吸附时间。这项工作为有效设计离子吸附的微孔材料的合理设计和优化提供了有意义的见解。当重叠效果强时,总吸附量可能与总吸附时间成反比,表明可以同时实现高吸附量和短吸附时间。这项工作为有效设计离子吸附的微孔材料的合理设计和优化提供了有意义的见解。