当前位置:
X-MOL 学术
›
J. Phys. Chem. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Mutual Identification between the Pressure-Induced Superlubricity and the Image Contrast Inversion of Carbon Nanostructures from AFM Technology
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2019-03-05 00:00:00 , DOI: 10.1021/acs.jpclett.9b00155 Junhui Sun 1, 2, 3, 4 , Keke Chang 2 , Daohong Mei 5 , Zhibin Lu 3 , Jibin Pu 1 , Qunji Xue 1, 3 , Qing Huang 2 , Liping Wang 1 , Shiyu Du 2
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2019-03-05 00:00:00 , DOI: 10.1021/acs.jpclett.9b00155 Junhui Sun 1, 2, 3, 4 , Keke Chang 2 , Daohong Mei 5 , Zhibin Lu 3 , Jibin Pu 1 , Qunji Xue 1, 3 , Qing Huang 2 , Liping Wang 1 , Shiyu Du 2
Affiliation
Previous studies predict pressure-induced superlubricity, but that is still undetermined due to the absence of a probing technique. Here, we present unprecedented mutual identification between the superlubricity and atomic-scale image from atomic force microscopy (AFM) measurement by the first-principles simulation of metallic Cu tip scanning on carbon nanostructures. With decreasing tip height, the sliding potential evolves from anticorrugated, to substantially flattened, and eventually to corrugated patterns, inducing superlubricity of the flattened potential at the critical height. Correspondingly, both the normal forces and the contrast of atomic image patterns also undergo similar inversions at the respective critical tip heights, in accordance with recent experimental observation. On the basis of the underlying mechanism elucidated, the mutual identification between the image contrast inversion and the superlubricity is confirmed. This may advance AFM technology to stimulate the experimental observation of superlubricity from its theoretical studies and may thus promote the development of theory systems of superlubticity.
中文翻译:
AFM技术对碳纳米结构的压力诱导的超润滑性和图像对比度反转之间的相互识别
先前的研究预测了压力引起的超润滑性,但由于缺乏探测技术,因此仍无法确定。在这里,我们通过原子力显微镜(AFM)测量通过碳纳米结构上金属Cu尖端扫描的第一性原理对超润滑性和原子级图像之间进行了前所未有的相互鉴定。随着尖端高度的减小,滑动电势从抗皱,逐渐变平,最终演变成波纹状,从而在临界高度产生了变平电势的超润滑性。相应地,根据最近的实验观察,法向力和原子图像图案的对比度在相应的临界尖端高度处也经历相似的反转。根据阐明的基本机制,确认了图像对比度反转和超润滑性之间的相互识别。这可能会推动原子力显微镜技术从其理论研究中激发对超润滑性的实验观察,从而可能促进超润滑性理论体系的发展。
更新日期:2019-03-05
中文翻译:
AFM技术对碳纳米结构的压力诱导的超润滑性和图像对比度反转之间的相互识别
先前的研究预测了压力引起的超润滑性,但由于缺乏探测技术,因此仍无法确定。在这里,我们通过原子力显微镜(AFM)测量通过碳纳米结构上金属Cu尖端扫描的第一性原理对超润滑性和原子级图像之间进行了前所未有的相互鉴定。随着尖端高度的减小,滑动电势从抗皱,逐渐变平,最终演变成波纹状,从而在临界高度产生了变平电势的超润滑性。相应地,根据最近的实验观察,法向力和原子图像图案的对比度在相应的临界尖端高度处也经历相似的反转。根据阐明的基本机制,确认了图像对比度反转和超润滑性之间的相互识别。这可能会推动原子力显微镜技术从其理论研究中激发对超润滑性的实验观察,从而可能促进超润滑性理论体系的发展。