当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Capacitive Pressure Sensor with Wide-Range, Bendable, and High Sensitivity Based on the Bionic Komochi Konbu Structure and Cu/Ni Nanofiber Network
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2019-03-04 00:00:00 , DOI: 10.1021/acsami.9b00941 Jian Wang 1 , Ryuki Suzuki 1 , Marine Shao 2 , Frédéric Gillot 2 , Seimei Shiratori 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2019-03-04 00:00:00 , DOI: 10.1021/acsami.9b00941 Jian Wang 1 , Ryuki Suzuki 1 , Marine Shao 2 , Frédéric Gillot 2 , Seimei Shiratori 1
Affiliation
High-performance flexible pressure sensors have an essential application in many fields such as human detection and human–computer interaction. Herein, on the basis of the dielectric layer of a bionic komochi konbu structure, we propose a low-cost and novel capacitive sensor that achieves high sensitivity and stability over a broad range of tactile pressures. Further, the flexible and durable electrode layer of the transparent junctionless copper/nickel-nanonetwork was prepared based on electrospinning and electroless deposition techniques, which ensured high bending stability and high cycle stability of our sensor. More importantly, because of the sizeable protruding structure and internal micropores in the elastomer structure we designed, the inward curling of the protruding structure and the effectual closing of the micropores increase the effective dielectric constant under the action of the compressive force, improving the sensitivity of the sensor. Measured response and relaxation time (162 ms) are 250 times faster than those of a conventional flat polydimethylsiloxane capacitive sensor. In addition, the fabricated capacitive pressure sensor demonstrates the ability to be used on wearable applications, not only to quickly recognize the tapping and bending of a finger but also to show that the pressure of the finger can be sensed when the finger grabs the object. The sensors we have developed have shown great promise in practical applications, such as human rehabilitation and exercise monitoring, as well as human–computer interaction control.
中文翻译:
基于仿生Komochi Konbu结构和Cu / Ni纳米纤维网络的大范围,可弯曲和高灵敏度的电容式压力传感器
高性能柔性压力传感器在诸如人体检测和人机交互等许多领域都具有必不可少的应用。在此,基于仿生komochi konbu结构的介电层,我们提出了一种低成本,新颖的电容式传感器,该传感器可在较大的触觉压力范围内实现高灵敏度和稳定性。此外,基于电纺丝和化学沉积技术制备了透明的无结铜/镍-纳米网络的柔性且耐用的电极层,从而确保了我们传感器的高弯曲稳定性和高循环稳定性。更重要的是,由于我们设计的弹性体结构具有较大的突出结构和内部微孔,突出结构的向内卷曲和微孔的有效闭合在压缩力的作用下提高了有效介电常数,从而提高了传感器的灵敏度。测得的响应和弛豫时间(162毫秒)比传统的扁平聚二甲基硅氧烷电容式传感器快250倍。此外,所制造的电容式压力传感器具有在可穿戴应用中使用的能力,不仅可以快速识别手指的敲击和弯曲,还可以显示当手指抓住物体时可以感测到手指的压力。我们开发的传感器在实际应用中显示出了巨大的希望,例如人体康复和运动监控以及人机交互控制。
更新日期:2019-03-04
中文翻译:
基于仿生Komochi Konbu结构和Cu / Ni纳米纤维网络的大范围,可弯曲和高灵敏度的电容式压力传感器
高性能柔性压力传感器在诸如人体检测和人机交互等许多领域都具有必不可少的应用。在此,基于仿生komochi konbu结构的介电层,我们提出了一种低成本,新颖的电容式传感器,该传感器可在较大的触觉压力范围内实现高灵敏度和稳定性。此外,基于电纺丝和化学沉积技术制备了透明的无结铜/镍-纳米网络的柔性且耐用的电极层,从而确保了我们传感器的高弯曲稳定性和高循环稳定性。更重要的是,由于我们设计的弹性体结构具有较大的突出结构和内部微孔,突出结构的向内卷曲和微孔的有效闭合在压缩力的作用下提高了有效介电常数,从而提高了传感器的灵敏度。测得的响应和弛豫时间(162毫秒)比传统的扁平聚二甲基硅氧烷电容式传感器快250倍。此外,所制造的电容式压力传感器具有在可穿戴应用中使用的能力,不仅可以快速识别手指的敲击和弯曲,还可以显示当手指抓住物体时可以感测到手指的压力。我们开发的传感器在实际应用中显示出了巨大的希望,例如人体康复和运动监控以及人机交互控制。