当前位置:
X-MOL 学术
›
J. Appl. Polym. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Fabrication and cell morphology of a microcellular poly(ether imide)–carbon nanotube composite foam with a three‐dimensional shape
Journal of Applied Polymer Science ( IF 2.7 ) Pub Date : 2019-01-22 , DOI: 10.1002/app.47501 Dong Feng 1 , Pengju Liu 1 , Li Li 1
Journal of Applied Polymer Science ( IF 2.7 ) Pub Date : 2019-01-22 , DOI: 10.1002/app.47501 Dong Feng 1 , Pengju Liu 1 , Li Li 1
Affiliation
The preparation of microcellular poly(ether imide) (PEI) based foams with three‐dimensional geometry remains a great challenge worldwide. In this study, we fabricated microcellular PEI–carbon nanotube (CNT) bead foams with a batch rapid depressurization method in a self‐designed mold with supercritical carbon dioxide (scCO2) as a blowing agent. The effects of the saturation time, foaming temperature, foaming pressure, and depressurization rate on the microcellular structures of the PEI foam were analyzed by the Taguchi approach to determine the optimum foaming conditions, and the influence of the CNT content on the cell structure was analyzed. The results show that the depressurization rate and foaming temperature were the key factors influencing the cell size and cell density (N
f); that is, the high depressurization rate and low foaming temperature favored a small cell size and high N
f. The foaming temperature also influenced the foaming ratio (ϕ), and a high ϕ was obtained at a high foaming temperature. Under optimal foaming conditions, PEI with 2.0 wt % CNTs presented the best cell structure; N
f, cell size, and ϕ were 6.14 × 1010 cell/cm3, 2.43 μm, and 2.08, respectively. The mechanical properties of the final parts were related more to the foaming time and CNT concentration, and the maximum tensile and compression strength were reached at 3 h foaming time and 2.0 wt % CNT, that is, at 2.75 and 15.1 MPa (10% strain), respectively. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47501.
中文翻译:
三维形状的微孔聚醚酰亚胺-碳纳米管复合泡沫的制备和细胞形态
具有三维几何形状的基于微孔聚醚酰亚胺(PEI)的泡沫的制备仍然是世界范围内的巨大挑战。在这项研究中,我们在一个自行设计的模具中,以超临界二氧化碳(scCO 2)作为发泡剂,采用间歇快速降压方法制造了微孔PEI-碳纳米管(CNT)珠状泡沫。通过Taguchi方法分析了饱和时间,发泡温度,发泡压力和降压速率对PEI泡沫微孔结构的影响,以确定最佳发泡条件,并分析了CNT含量对孔结构的影响。 。结果表明,降压速率和发泡温度是影响泡孔尺寸和泡孔密度(N f)的关键因素。 ); 即,高的减压速度和低发泡温度有利于小泡孔尺寸和高Ñ ˚F。发泡温度也影响发泡比(○),并且在高发泡温度下获得高○。在最佳发泡条件下,具有2.0 wt%CNT的PEI表现出最佳的泡孔结构。N f,像元大小和ϕ为6.14×10 10个像元/ cm 3 ,2.43μm和2.08。最终零件的机械性能更多地与发泡时间和CNT浓度相关,并且在3 h发泡时间和2.0 wt%CNT时达到最大拉伸和压缩强度,即在2.75和15.1 MPa(10%应变)下), 分别。分级为4 +©2019 Wiley Periodicals,Inc.J.Appl。Polym。科学 2019,136,47501。
更新日期:2019-01-22
中文翻译:
三维形状的微孔聚醚酰亚胺-碳纳米管复合泡沫的制备和细胞形态
具有三维几何形状的基于微孔聚醚酰亚胺(PEI)的泡沫的制备仍然是世界范围内的巨大挑战。在这项研究中,我们在一个自行设计的模具中,以超临界二氧化碳(scCO 2)作为发泡剂,采用间歇快速降压方法制造了微孔PEI-碳纳米管(CNT)珠状泡沫。通过Taguchi方法分析了饱和时间,发泡温度,发泡压力和降压速率对PEI泡沫微孔结构的影响,以确定最佳发泡条件,并分析了CNT含量对孔结构的影响。 。结果表明,降压速率和发泡温度是影响泡孔尺寸和泡孔密度(N f)的关键因素。 ); 即,高的减压速度和低发泡温度有利于小泡孔尺寸和高Ñ ˚F。发泡温度也影响发泡比(○),并且在高发泡温度下获得高○。在最佳发泡条件下,具有2.0 wt%CNT的PEI表现出最佳的泡孔结构。N f,像元大小和ϕ为6.14×10 10个像元/ cm 3 ,2.43μm和2.08。最终零件的机械性能更多地与发泡时间和CNT浓度相关,并且在3 h发泡时间和2.0 wt%CNT时达到最大拉伸和压缩强度,即在2.75和15.1 MPa(10%应变)下), 分别。分级为4 +©2019 Wiley Periodicals,Inc.J.Appl。Polym。科学 2019,136,47501。