当前位置:
X-MOL 学术
›
Chem. Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Halide Perovskites: Is It All about the Interfaces?
Chemical Reviews ( IF 51.4 ) Pub Date : 2019-03-01 00:00:00 , DOI: 10.1021/acs.chemrev.8b00558
Philip Schulz 1, 2, 3 , David Cahen 4 , Antoine Kahn 5
Chemical Reviews ( IF 51.4 ) Pub Date : 2019-03-01 00:00:00 , DOI: 10.1021/acs.chemrev.8b00558
Philip Schulz 1, 2, 3 , David Cahen 4 , Antoine Kahn 5
Affiliation
![]() |
Design and modification of interfaces, always a critical issue for semiconductor devices, has become a primary tool to harness the full potential of halide perovskite (HaP)-based optoelectronics, including photovoltaics and light-emitting diodes. In particular, the outstanding improvements in HaP solar cell performance and stability can be primarily ascribed to a careful choice of the interfacial layout in the layer stack. In this review, we describe the unique challenges and opportunities of these approaches (section 1). For this purpose, we first elucidate the basic physical and chemical properties of the exposed HaP thin film and crystal surfaces, including topics such as surface termination, surface reactivity, and electronic structure (section 2). This is followed by discussing experimental results on the energetic alignment processes at the interfaces between the HaP and transport and buffer layers. This section includes understandings reached as well as commonly proposed and applied models, especially the often-questionable validity of vacuum level alignment, the importance of interface dipoles, and band bending as the result of interface formation (section 3). We follow this by elaborating on the impact of the interface formation on device performance, considering effects such as chemical reactions and surface passivation on interface energetics and stability. On the basis of these concepts, we propose a roadmap for the next steps in interfacial design for HaP semiconductors (section 4), emphasizing the importance of achieving control over the interface energetics and chemistry (i.e., reactivity) to allow predictive power for tailored interface optimization.
中文翻译:
卤化物钙钛矿:是否全部与界面有关?
接口的设计和修改一直是半导体设备的关键问题,已成为利用卤化钙钛矿(HaP)基光电器件(包括光伏器件和发光二极管)的全部潜能的主要工具。特别地,HaP太阳能电池性能和稳定性的显着改善可主要归因于仔细选择层堆叠中的界面布局。在这篇综述中,我们描述了这些方法的独特挑战和机遇(第1节)。为此,我们首先阐明暴露的HaP薄膜和晶体表面的基本物理和化学性质,包括诸如表面终止,表面反应性和电子结构之类的主题(第2节)。接下来是讨论关于HaP与传输层和缓冲层之间的界面上的能量对齐过程的实验结果。本节包括达成的理解以及通常提出和应用的模型,特别是经常会质疑的真空度对准的有效性,界面偶极子的重要性以及由于界面形成而引起的能带弯曲(第3节)。在此之前,我们详细介绍了界面形成对器件性能的影响,同时考虑了化学反应和表面钝化对界面能量和稳定性的影响。基于这些概念,我们为HaP半导体的界面设计的后续步骤(第4节)提出了路线图,强调了实现对界面高能和化学的控制(即,
更新日期:2019-03-01
中文翻译:

卤化物钙钛矿:是否全部与界面有关?
接口的设计和修改一直是半导体设备的关键问题,已成为利用卤化钙钛矿(HaP)基光电器件(包括光伏器件和发光二极管)的全部潜能的主要工具。特别地,HaP太阳能电池性能和稳定性的显着改善可主要归因于仔细选择层堆叠中的界面布局。在这篇综述中,我们描述了这些方法的独特挑战和机遇(第1节)。为此,我们首先阐明暴露的HaP薄膜和晶体表面的基本物理和化学性质,包括诸如表面终止,表面反应性和电子结构之类的主题(第2节)。接下来是讨论关于HaP与传输层和缓冲层之间的界面上的能量对齐过程的实验结果。本节包括达成的理解以及通常提出和应用的模型,特别是经常会质疑的真空度对准的有效性,界面偶极子的重要性以及由于界面形成而引起的能带弯曲(第3节)。在此之前,我们详细介绍了界面形成对器件性能的影响,同时考虑了化学反应和表面钝化对界面能量和稳定性的影响。基于这些概念,我们为HaP半导体的界面设计的后续步骤(第4节)提出了路线图,强调了实现对界面高能和化学的控制(即,