当前位置:
X-MOL 学术
›
Phys. Chem. Chem. Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Density functional theory prediction of Mg3N2 as a high-performance anode material for Li-ion batteries†
Physical Chemistry Chemical Physics ( IF 2.9 ) Pub Date : 2019-02-27 00:00:00 , DOI: 10.1039/c8cp07398h
Lixin Xiong 1, 2, 3, 4, 5 , Junping Hu 5, 6, 7, 8 , Sicheng Yu 1, 2, 3, 4, 5 , Musheng Wu 1, 2, 3, 4, 5 , Bo Xu 1, 2, 3, 4, 5 , Chuying Ouyang 1, 2, 3, 4, 5
Physical Chemistry Chemical Physics ( IF 2.9 ) Pub Date : 2019-02-27 00:00:00 , DOI: 10.1039/c8cp07398h
Lixin Xiong 1, 2, 3, 4, 5 , Junping Hu 5, 6, 7, 8 , Sicheng Yu 1, 2, 3, 4, 5 , Musheng Wu 1, 2, 3, 4, 5 , Bo Xu 1, 2, 3, 4, 5 , Chuying Ouyang 1, 2, 3, 4, 5
Affiliation
![]() |
Two dimensional (2D) materials have great potential for application in energy storage due to their unique structural characteristics. Here we propose for the first time a density functional theory study into the scientific feasibility of using g-Mg3N2, which is a novel graphene-like 2D material, as a high-capacity anode material for Li-ion batteries (LIBs). The favorable Li-adsorption geometries and the Li adsorption thermodynamics are explored in detail. It is found that monolayer g-Mg3N2 can be lithiated up to Li7Mg3N2 that offers a super high theoretical capacity of 1858 mA h g−1 and the average intercalation potential ranging from 0.2 to 0.7 V is suitable for anode applications. The metallic electronic structures of LixMg3N2, in combination with the low Li-ion diffusion energy barriers on the honeycomb structure, promote high electron and Li-ion conductivity to ensure fast charge/discharge cycling. The excellent structural stability of Mg3N2 is good for the cycling performance. These results predict that g-Mg3N2 can serve as a high-performance anode material for LIBs.
中文翻译:
Mg 3 N 2作为锂离子电池高性能负极材料的密度泛函理论预测†
二维(2D)材料由于其独特的结构特性而在储能方面具有巨大的潜力。在这里,我们首次提出了密度泛函理论研究,以研究使用g-Mg 3 N 2作为新型石墨烯类2D材料作为锂离子电池(LIB)的高容量阳极材料的科学可行性。。详细探讨了有利的锂吸附几何形状和锂吸附热力学。发现单层g-Mg 3 N 2可以被锂化为Li 7 Mg 3 N 2,从而提供1858 mA hg -1的超高理论容量平均插入电位范围为0.2至0.7 V,适合阳极应用。Li x Mg 3 N 2的金属电子结构与蜂窝结构上的低Li离子扩散能垒相结合,促进了高电子和Li离子电导率,从而确保了快速的充电/放电循环。Mg 3 N 2的优异的结构稳定性对于循环性能而言是良好的。这些结果表明,g-Mg 3 N 2可以用作LIB的高性能阳极材料。
更新日期:2019-02-27
中文翻译:

Mg 3 N 2作为锂离子电池高性能负极材料的密度泛函理论预测†
二维(2D)材料由于其独特的结构特性而在储能方面具有巨大的潜力。在这里,我们首次提出了密度泛函理论研究,以研究使用g-Mg 3 N 2作为新型石墨烯类2D材料作为锂离子电池(LIB)的高容量阳极材料的科学可行性。。详细探讨了有利的锂吸附几何形状和锂吸附热力学。发现单层g-Mg 3 N 2可以被锂化为Li 7 Mg 3 N 2,从而提供1858 mA hg -1的超高理论容量平均插入电位范围为0.2至0.7 V,适合阳极应用。Li x Mg 3 N 2的金属电子结构与蜂窝结构上的低Li离子扩散能垒相结合,促进了高电子和Li离子电导率,从而确保了快速的充电/放电循环。Mg 3 N 2的优异的结构稳定性对于循环性能而言是良好的。这些结果表明,g-Mg 3 N 2可以用作LIB的高性能阳极材料。