Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Bipolaron Dynamics in Graphene Nanoribbons.
Scientific Reports ( IF 3.8 ) Pub Date : 2019-02-27 , DOI: 10.1038/s41598-019-39774-2 Gesiel Gomes Silva 1 , Luiz Antonio Ribeiro Junior 2, 3, 4 , Marcelo Lopes Pereira Junior 5 , Antonio Luciano de Almeida Fonseca 3, 4 , Rafael Timóteo de Sousa Júnior 6 , Geraldo Magela E Silva 5
Scientific Reports ( IF 3.8 ) Pub Date : 2019-02-27 , DOI: 10.1038/s41598-019-39774-2 Gesiel Gomes Silva 1 , Luiz Antonio Ribeiro Junior 2, 3, 4 , Marcelo Lopes Pereira Junior 5 , Antonio Luciano de Almeida Fonseca 3, 4 , Rafael Timóteo de Sousa Júnior 6 , Geraldo Magela E Silva 5
Affiliation
Graphene nanoribbons (GNRs) are two-dimensional structures with a rich variety of electronic properties that derive from their semiconducting band gaps. In these materials, charge transport can occur via a hopping process mediated by carriers formed by self-interacting states between the excess charge and local lattice deformations. Here, we use a two-dimensional tight-binding approach to reveal the formation of bipolarons in GNRs. Our results show that the formed bipolarons are dynamically stable even for high electric field strengths when it comes to GNRs. Remarkably, the bipolaron dynamics can occur in acoustic and optical regimes concerning its saturation velocity. The phase transition between these two regimes takes place for a critical field strength in which the bipolaron moves roughly with the speed of sound in the material.
中文翻译:
石墨烯纳米带中的双极子动力学。
石墨烯纳米带(GNR)是一种二维结构,具有源自其半导体带隙的丰富电子特性。在这些材料中,电荷传输可以通过由过量电荷和局部晶格变形之间的自相互作用状态形成的载流子介导的跳跃过程来发生。在这里,我们使用二维紧束缚方法来揭示 GNR 中双极子的形成。我们的结果表明,即使在 GNR 的高电场强度下,形成的双极子也是动态稳定的。值得注意的是,双极子动力学可以在声学和光学领域发生,涉及其饱和速度。这两种状态之间的相变发生在临界场强处,其中双极子大致以材料中的声速移动。
更新日期:2019-02-27
中文翻译:
石墨烯纳米带中的双极子动力学。
石墨烯纳米带(GNR)是一种二维结构,具有源自其半导体带隙的丰富电子特性。在这些材料中,电荷传输可以通过由过量电荷和局部晶格变形之间的自相互作用状态形成的载流子介导的跳跃过程来发生。在这里,我们使用二维紧束缚方法来揭示 GNR 中双极子的形成。我们的结果表明,即使在 GNR 的高电场强度下,形成的双极子也是动态稳定的。值得注意的是,双极子动力学可以在声学和光学领域发生,涉及其饱和速度。这两种状态之间的相变发生在临界场强处,其中双极子大致以材料中的声速移动。