当前位置: X-MOL 学术Nat. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Emission and propagation of 1D and 2D spin waves with nanoscale wavelengths in anisotropic spin textures
Nature Nanotechnology ( IF 38.1 ) Pub Date : 2019-02-25 , DOI: 10.1038/s41565-019-0383-4
Volker Sluka , Tobias Schneider , Rodolfo A. Gallardo , Attila Kákay , Markus Weigand , Tobias Warnatz , Roland Mattheis , Alejandro Roldán-Molina , Pedro Landeros , Vasil Tiberkevich , Andrei Slavin , Gisela Schütz , Artur Erbe , Alina Deac , Jürgen Lindner , Jörg Raabe , Jürgen Fassbender , Sebastian Wintz

Spin waves offer intriguing perspectives for computing and signal processing, because their damping can be lower than the ohmic losses in conventional complementary metal–oxide–semiconductor (CMOS) circuits. Magnetic domain walls show considerable potential as magnonic waveguides for on-chip control of the spatial extent and propagation of spin waves. However, low-loss guidance of spin waves with nanoscale wavelengths and around angled tracks remains to be shown. Here, we demonstrate spin wave control using natural anisotropic features of magnetic order in an interlayer exchange-coupled ferromagnetic bilayer. We employ scanning transmission X-ray microscopy to image the generation of spin waves and their propagation across distances exceeding multiples of the wavelength. Spin waves propagate in extended planar geometries as well as along straight or curved one-dimensional domain walls. We observe wavelengths between 1 μm and 150 nm, with excitation frequencies ranging from 250 MHz to 3 GHz. Our results show routes towards the practical implementation of magnonic waveguides in the form of domain walls in future spin wave logic and computational circuits.



中文翻译:

各向异性自旋纹理中具有纳米级波长的一维和二维自旋波的发射和传播

自旋波的阻尼可以比传统的互补金属氧化物半导体(CMOS)电路的欧姆损耗低,从而为计算和信号处理提供了令人着迷的视角。磁畴壁显示出巨大的潜力,可作为片上控制自旋波的空间控制的大型波导。然而,具有纳米级波长和围绕倾斜轨道的自旋波的低损耗导引仍有待显示。在这里,我们展示了在层间交换耦合铁磁双层中使用磁阶的自然各向异性特征的自旋波控制。我们使用扫描透射X射线显微镜对自旋波的产生及其在超过波长倍数的距离内的传播进行成像。自旋波以扩展的平面几何形状以及沿直的或弯曲的一维畴壁传播。我们观察到的波长在1μm至150 nm之间,激发频率范围为250 MHz至3 GHz。我们的研究结果表明,在未来的自旋波逻辑和计算电路中,以畴壁的形式实际实现大型波导的途径。

更新日期:2019-02-26
down
wechat
bug