当前位置:
X-MOL 学术
›
Chem. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Triphenyl Phosphite as the Phosphorus Source for the Scalable and Cost-Effective Production of Transition Metal Phosphides
Chemistry of Materials ( IF 7.2 ) Pub Date : 2018-02-07 00:00:00 , DOI: 10.1021/acs.chemmater.8b00290 Junfeng Liu 1 , Michaela Meyns 1 , Ting Zhang 2 , Jordi Arbiol 2, 3 , Andreu Cabot 1, 3 , Alexey Shavel 1
Chemistry of Materials ( IF 7.2 ) Pub Date : 2018-02-07 00:00:00 , DOI: 10.1021/acs.chemmater.8b00290 Junfeng Liu 1 , Michaela Meyns 1 , Ting Zhang 2 , Jordi Arbiol 2, 3 , Andreu Cabot 1, 3 , Alexey Shavel 1
Affiliation
Transition metal phosphides have great potential to optimize a number of functionalities in several energy conversion and storage applications, particularly when nanostructured or in nanoparticle form. However, the synthesis of transition metal phosphide nanoparticles and its scalability is often limited by the toxicity, air sensitivity, and high cost of the reagents used. We present here a simple, scalable, and cost-effective “heating up” procedure to produce metal phosphides using inexpensive, low-toxicity, and air-stable triphenyl phosphite as source of phosphorus and chlorides as metal precursors. This procedure allows the synthesis of a variety of phosphide nanoparticles, including phosphides of Ni, Co, and Cu. The use of carbonyl metal precursors further allowed the synthesis of Fe2P and MoP nanoparticles. The fact that minor modifications in the experimental parameters allowed producing nanoparticles with different compositions and even to tune their size and shape shows the high potential and versatility of the triphenyl phosphite precursor and the presented method. We also detail here a methodology to displace organic ligands from the surface of phosphide nanoparticles, which is a key step toward their application in energy conversion and storage systems.
中文翻译:
亚磷酸三苯酯作为磷源,可扩展且经济高效地生产过渡金属磷化物
过渡金属磷化物具有在多种能量转换和存储应用中优化许多功能的巨大潜力,尤其是在纳米结构或纳米颗粒形式时。但是,过渡金属磷化物纳米粒子的合成及其可扩展性通常受到所用试剂的毒性,空气敏感性和高成本的限制。我们在这里介绍一种简单,可扩展且具有成本效益的“加热”程序,以使用廉价,低毒且空气稳定的亚磷酸三苯酯作为磷的来源,而氯化物作为金属前体来生产金属磷化物。该程序允许合成多种磷化物纳米颗粒,包括Ni,Co和Cu的磷化物。羰基金属前体的使用进一步允许Fe 2的合成P和MoP纳米粒子。实验参数的微小修改允许产生具有不同组成甚至调整其尺寸和形状的纳米颗粒的事实表明,亚磷酸三苯酯前体和所提出的方法具有很高的潜力和多功能性。我们还在此处详细介绍了从磷化物纳米颗粒表面置换有机配体的方法,这是迈向将其应用于能量转换和存储系统的关键一步。
更新日期:2018-02-07
中文翻译:
亚磷酸三苯酯作为磷源,可扩展且经济高效地生产过渡金属磷化物
过渡金属磷化物具有在多种能量转换和存储应用中优化许多功能的巨大潜力,尤其是在纳米结构或纳米颗粒形式时。但是,过渡金属磷化物纳米粒子的合成及其可扩展性通常受到所用试剂的毒性,空气敏感性和高成本的限制。我们在这里介绍一种简单,可扩展且具有成本效益的“加热”程序,以使用廉价,低毒且空气稳定的亚磷酸三苯酯作为磷的来源,而氯化物作为金属前体来生产金属磷化物。该程序允许合成多种磷化物纳米颗粒,包括Ni,Co和Cu的磷化物。羰基金属前体的使用进一步允许Fe 2的合成P和MoP纳米粒子。实验参数的微小修改允许产生具有不同组成甚至调整其尺寸和形状的纳米颗粒的事实表明,亚磷酸三苯酯前体和所提出的方法具有很高的潜力和多功能性。我们还在此处详细介绍了从磷化物纳米颗粒表面置换有机配体的方法,这是迈向将其应用于能量转换和存储系统的关键一步。