Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
NLL-Assisted Multilayer Graphene Patterning
ACS Omega ( IF 3.7 ) Pub Date : 2018-02-06 00:00:00 , DOI: 10.1021/acsomega.7b01853 Evgeniya Kovalska 1 , Ihor Pavlov , Petro Deminskyi , Anna Baldycheva 1 , F. Ömer Ilday , Coskun Kocabas 2
ACS Omega ( IF 3.7 ) Pub Date : 2018-02-06 00:00:00 , DOI: 10.1021/acsomega.7b01853 Evgeniya Kovalska 1 , Ihor Pavlov , Petro Deminskyi , Anna Baldycheva 1 , F. Ömer Ilday , Coskun Kocabas 2
Affiliation
The range of applications of diverse graphene-based devices could be limited by insufficient surface reactivity, unsatisfied shaping, or null energy gap of graphene. Engineering the graphene structure by laser techniques can adjust the transport properties and the surface area of graphene, providing devices of different nature with a higher capacitance. Additionally, the created periodic potential and appearance of the active external/inner/edge surface centers determine the multifunctionality of the graphene surface and corresponding devices. Here, we report on the first implementation of nonlinear laser lithography (NLL) for multilayer graphene (MLG) structuring, which offers a low-cost, single-step, and high-speed nanofabrication process. The NLL relies on the employment of a high repetition rate femtosecond Yb fiber laser that provides generation of highly reproducible, robust, uniform, and periodic nanostructures over a large surface area (1 cm2/15 s). NLL allows one to obtain clearly predesigned patterned graphene structures without fabrication tolerances, which are caused by contacting mask contamination, polymer residuals, and direct laser exposure of the graphene layers. We represent regularly patterned MLG (p-MLG) obtained by the chemical vapor deposition method on an NLL-structured Ni foil. We also demonstrate tuning of chemical (wettability) and electro-optical (transmittance and sheet resistance) properties of p-MLG by laser power adjustments. In conclusion, we show the great promise of fabricated devices, namely, supercapacitors, and Li-ion batteries by using NLL-assisted graphene patterning. Our approach demonstrates a new avenue to pattern graphene for multifunctional device engineering in optics, photonics, and bioelectronics.
中文翻译:
NLL辅助的多层石墨烯图案化
各种基于石墨烯的器件的应用范围可能受到表面反应性不足,不满意的成型或石墨烯的零能隙的限制。通过激光技术对石墨烯结构进行工程设计可以调整石墨烯的传输性能和表面积,从而为不同性质的器件提供更高的电容。另外,所创建的周期性电势和有源外部/内部/边缘表面中心的外观决定了石墨烯表面和相应设备的多功能性。在这里,我们报告了用于多层石墨烯(MLG)结构的非线性激光光刻(NLL)的首次实现,该工艺提供了一种低成本,单步且高速的纳米加工工艺。2 /15秒)。NLL允许人们获得清晰的预先设计的图案化石墨烯结构,而没有制造公差,这是由接触掩模污染,聚合物残留物和石墨烯层的直接激光曝光引起的。我们代表通过化学气相沉积法在NLL结构的Ni箔上获得的规则图案化的MLG(p-MLG)。我们还演示了通过调整激光功率来调节p-MLG的化学(润湿性)和电光(透射率和薄层电阻)特性。总之,通过使用NLL辅助石墨烯图案化,我们展示了制造设备的巨大前景,即超级电容器和锂离子电池。我们的方法为光学,光子学和生物电子学中的多功能设备工程展示了一种构图石墨烯的新途径。
更新日期:2018-02-06
中文翻译:
NLL辅助的多层石墨烯图案化
各种基于石墨烯的器件的应用范围可能受到表面反应性不足,不满意的成型或石墨烯的零能隙的限制。通过激光技术对石墨烯结构进行工程设计可以调整石墨烯的传输性能和表面积,从而为不同性质的器件提供更高的电容。另外,所创建的周期性电势和有源外部/内部/边缘表面中心的外观决定了石墨烯表面和相应设备的多功能性。在这里,我们报告了用于多层石墨烯(MLG)结构的非线性激光光刻(NLL)的首次实现,该工艺提供了一种低成本,单步且高速的纳米加工工艺。2 /15秒)。NLL允许人们获得清晰的预先设计的图案化石墨烯结构,而没有制造公差,这是由接触掩模污染,聚合物残留物和石墨烯层的直接激光曝光引起的。我们代表通过化学气相沉积法在NLL结构的Ni箔上获得的规则图案化的MLG(p-MLG)。我们还演示了通过调整激光功率来调节p-MLG的化学(润湿性)和电光(透射率和薄层电阻)特性。总之,通过使用NLL辅助石墨烯图案化,我们展示了制造设备的巨大前景,即超级电容器和锂离子电池。我们的方法为光学,光子学和生物电子学中的多功能设备工程展示了一种构图石墨烯的新途径。