当前位置:
X-MOL 学术
›
ACS Catal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Solvated Electrons for Photochemistry Syntheses Using Conjugated Carbon Nitride Polymers
ACS Catalysis ( IF 11.3 ) Pub Date : 2019-02-25 00:00:00 , DOI: 10.1021/acscatal.9b00314 Honghui Ou 1 , Chao Tang 1 , Xinru Chen 1 , Min Zhou 1 , Xinchen Wang 1
ACS Catalysis ( IF 11.3 ) Pub Date : 2019-02-25 00:00:00 , DOI: 10.1021/acscatal.9b00314 Honghui Ou 1 , Chao Tang 1 , Xinru Chen 1 , Min Zhou 1 , Xinchen Wang 1
Affiliation
Solvated electrons have attracted increasing research interest due to their strong reducing ability. However, the generation and utilization of solvated electrons in photocatalytic systems are rarely reported owing to the challenges in synthesis and their complex structures. Here, we present a photocatalytic system by accessing laboratory-scale concentrations of ammoniated electrons. Under visible light irradiation, ammoniated electrons are achieved by a cyanamide functionalized and potassium heptazine based melon polymer (PC-HM) in the presence of an electron donor, which are stable for days. This PC-HM can produce ammoniated electrons at room temperature to reduce dioxygen, thus enabling the production of H2O2 coupled with the selective oxidation of alcohols under visible light illumination. This work presents the possibility to take advantage of ammoniated electrons for solar energy conversion in energy and advanced organic chemistry.
中文翻译:
使用共轭氮化碳聚合物进行光化学合成的溶剂化电子
溶剂化电子由于其强大的还原能力而吸引了越来越多的研究兴趣。然而,由于合成及其复杂结构的挑战,很少报道光催化体系中溶剂化电子的产生和利用。在这里,我们通过访问实验室规模的氨化电子浓度提出了一种光催化系统。在可见光照射下,氨化电子是在电子给体存在的情况下,通过氨基酰胺官能化的基于庚庚酸钾的瓜类聚合物(PC-HM)实现的,可稳定数天。该PC-HM可以在室温下产生氨化电子,以减少双氧,因此可以产生H 2 O 2加上在可见光照射下酒精的选择性氧化。这项工作提出了利用氨化电子在能源和高级有机化学中进行太阳能转换的可能性。
更新日期:2019-02-25
中文翻译:
使用共轭氮化碳聚合物进行光化学合成的溶剂化电子
溶剂化电子由于其强大的还原能力而吸引了越来越多的研究兴趣。然而,由于合成及其复杂结构的挑战,很少报道光催化体系中溶剂化电子的产生和利用。在这里,我们通过访问实验室规模的氨化电子浓度提出了一种光催化系统。在可见光照射下,氨化电子是在电子给体存在的情况下,通过氨基酰胺官能化的基于庚庚酸钾的瓜类聚合物(PC-HM)实现的,可稳定数天。该PC-HM可以在室温下产生氨化电子,以减少双氧,因此可以产生H 2 O 2加上在可见光照射下酒精的选择性氧化。这项工作提出了利用氨化电子在能源和高级有机化学中进行太阳能转换的可能性。