当前位置:
X-MOL 学术
›
ChemSusChem
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Polyhydroxyalkanoate‐Modified Bacterium Regulates Biomass Structure and Promotes Synthesis of Carbon Materials for High‐Performance Supercapacitors
ChemSusChem ( IF 7.5 ) Pub Date : 2019-03-26 , DOI: 10.1002/cssc.201802894 Kejing Zhang 1 , Mingren Liu 1 , Mengying Si 1 , Zhongren Wang 1 , Shengnan Zhuo 1 , Liyuan Chai 1 , Yan Shi 1, 2
ChemSusChem ( IF 7.5 ) Pub Date : 2019-03-26 , DOI: 10.1002/cssc.201802894 Kejing Zhang 1 , Mingren Liu 1 , Mengying Si 1 , Zhongren Wang 1 , Shengnan Zhuo 1 , Liyuan Chai 1 , Yan Shi 1, 2
Affiliation
Biomass‐derived carbons have been extensively explored as electrode materials in supercapacitors. However, the type of biomass selected and its specific structure affects the synthesis of the advanced biomass‐derived carbon materials. A green and facile method for the synthesis of carbon material with nanoscale and microscale porous structures for supercapacitors has been developed, based on regulating the original cell structure of the bacterial strain. The cell structure is modified in situ by regulating the accumulation of polyhydroxyalkanoate under controlled cultivation conditions. The novel bacterial in situ modification and nitrogen doping endow this hierarchically derived carbon material with improved performance. This material exhibits an extremely high specific capacitance (420 F g−1 at 1 A g−1) and long cycling stability (97 % capacitance retention after 10 000 cycles at 5 A g−1) in aqueous electrolytes. More importantly, the symmetric supercapacitor delivers a superior energy density of 60.76 Wh kg−1 at 625 W kg−1 in an ionic liquid electrolyte system. Moreover, all components in the synthesis are low in cost, environmentally friendly, and biocompatible. With these unique features, the bacterial self‐modification mode opens new avenues into the design and production of a wide range of hierarchical structures.
中文翻译:
聚羟基链烷酸酯修饰的细菌调节生物量结构并促进高性能超级电容器碳材料的合成
生物质衍生的碳已被广泛用作超级电容器的电极材料。但是,选择的生物质类型及其特定结构会影响高级生物质衍生的碳材料的合成。在调节细菌菌株的原始细胞结构的基础上,已经开发了一种绿色简便的方法来合成具有超级电容器的纳米级和微米级多孔结构的碳材料。细胞结构通过在受控培养条件下调节聚羟基链烷酸酯的积累来原位修饰。新颖的细菌原位修饰和氮掺杂赋予了这种分层衍生的碳材料更高的性能。该材料具有极高的比电容(在1 A g时为420 F g -1-1)和在水性电解质中的长循环稳定性(在5 A g -1的条件下进行10 000次循环后具有97%的电容保持)。更重要的是,在离子液体电解质系统中,对称超级电容器在625 W kg -1时可提供60.76 Wh kg -1的卓越能量密度。此外,合成中的所有组分均成本低,对环境友好且具有生物相容性。凭借这些独特的功能,细菌自我修饰模式为各种分层结构的设计和生产开辟了新途径。
更新日期:2019-03-26
中文翻译:
聚羟基链烷酸酯修饰的细菌调节生物量结构并促进高性能超级电容器碳材料的合成
生物质衍生的碳已被广泛用作超级电容器的电极材料。但是,选择的生物质类型及其特定结构会影响高级生物质衍生的碳材料的合成。在调节细菌菌株的原始细胞结构的基础上,已经开发了一种绿色简便的方法来合成具有超级电容器的纳米级和微米级多孔结构的碳材料。细胞结构通过在受控培养条件下调节聚羟基链烷酸酯的积累来原位修饰。新颖的细菌原位修饰和氮掺杂赋予了这种分层衍生的碳材料更高的性能。该材料具有极高的比电容(在1 A g时为420 F g -1-1)和在水性电解质中的长循环稳定性(在5 A g -1的条件下进行10 000次循环后具有97%的电容保持)。更重要的是,在离子液体电解质系统中,对称超级电容器在625 W kg -1时可提供60.76 Wh kg -1的卓越能量密度。此外,合成中的所有组分均成本低,对环境友好且具有生物相容性。凭借这些独特的功能,细菌自我修饰模式为各种分层结构的设计和生产开辟了新途径。