Synthesis ( IF 2.2 ) Pub Date : 2018-02-01 , DOI: 10.1055/s-0036-1589527 Metin Balci
Abstract
Carbon–nitrogen bond formation is one of the most important reactions in organic chemistry. Various synthetic strategies for the generation of C–N bonds are described in the literature. For example, primary amines can be easily synthesized by the thermal decomposition of an acyl azide to an isocyanate, i.e. the Curtis rearrangement, followed by hydrolysis; the Curtius rearrangement has been used extensively. Furthermore, the advantage of the Curtius rearrangement is the isolation of acyl azides as well as the corresponding isocyanates. The isocyanates can be converted into various nitrogen-containing compounds upon reaction with various nucleophiles that can be used as important synthons for cyclization, in other words, for the synthesis of heterocycles. Therefore, this review demonstrates the importance of acyl azides not only in the synthesis acyclic systems, but also in the synthesis of various nitrogen-containing heterocycles.
1 Introduction
2 Synthesis of Acyl Azides
2.1 Acyl Azides from Carboxylic Acid Derivatives
2.2 Acyl Azides by Direct Transformation of Carboxylic Acids
2.3 Acyl Azides from Aldehydes
2.4 Carbamoyl Azides from Haloarenes, Sodium Azide, and N-Formylsaccharin
3 Mechanism of Formation of Isocyanates
4 Synthesis of Diacyl Azides
5 Synthetic Applications
5.1 Synthesis of Pyrimidinone Derivatives
5.2 Dihydropyrimidinone and Isoquinolinone Derivatives
5.3 Synthesis of Tetrahydroisoquinoline Skeleton
5.4 Synthesis of Five-Membered Heterocycles
5.5 Heterocycles Synthesized Starting from Homophthalic acid
5.6 Heterocycles Synthesized from 2-(Ethoxycarbonyl)nicotinic Acid
5.7 Formation of Aza-spiro Compounds
5.8 Parham-Type Cyclization
5.9 Diazepinone Derivatives
5.10 Synthesis of Pyridine Derivatives
5.11 Synthesis of Indole Derivatives
6 Miscellaneous
7 Conclusion
Carbon–nitrogen bond formation is one of the most important reactions in organic chemistry. Various synthetic strategies for the generation of C–N bonds are described in the literature. For example, primary amines can be easily synthesized by the thermal decomposition of an acyl azide to an isocyanate, i.e. the Curtis rearrangement, followed by hydrolysis; the Curtius rearrangement has been used extensively. Furthermore, the advantage of the Curtius rearrangement is the isolation of acyl azides as well as the corresponding isocyanates. The isocyanates can be converted into various nitrogen-containing compounds upon reaction with various nucleophiles that can be used as important synthons for cyclization, in other words, for the synthesis of heterocycles. Therefore, this review demonstrates the importance of acyl azides not only in the synthesis acyclic systems, but also in the synthesis of various nitrogen-containing heterocycles.
1 Introduction
2 Synthesis of Acyl Azides
2.1 Acyl Azides from Carboxylic Acid Derivatives
2.2 Acyl Azides by Direct Transformation of Carboxylic Acids
2.3 Acyl Azides from Aldehydes
2.4 Carbamoyl Azides from Haloarenes, Sodium Azide, and N-Formylsaccharin
3 Mechanism of Formation of Isocyanates
4 Synthesis of Diacyl Azides
5 Synthetic Applications
5.1 Synthesis of Pyrimidinone Derivatives
5.2 Dihydropyrimidinone and Isoquinolinone Derivatives
5.3 Synthesis of Tetrahydroisoquinoline Skeleton
5.4 Synthesis of Five-Membered Heterocycles
5.5 Heterocycles Synthesized Starting from Homophthalic acid
5.6 Heterocycles Synthesized from 2-(Ethoxycarbonyl)nicotinic Acid
5.7 Formation of Aza-spiro Compounds
5.8 Parham-Type Cyclization
5.9 Diazepinone Derivatives
5.10 Synthesis of Pyridine Derivatives
5.11 Synthesis of Indole Derivatives
6 Miscellaneous
7 Conclusion
中文翻译:
酰基叠氮化物:各种杂环合成中的多功能化合物
摘要
碳氮键的形成是有机化学中最重要的反应之一。文献中描述了各种用于生成C–N键的合成策略。例如,通过将酰基叠氮化物热分解成异氰酸酯,即柯蒂斯重排,然后水解,可以容易地合成伯胺。Curtius重排已被广泛使用。此外,Curtius重排的优点是可分离酰基叠氮化物以及相应的异氰酸酯。与各种亲核试剂反应后,异氰酸酯可转化为各种含氮化合物,这些亲核试剂可用作环化的重要合成子,换句话说,可用于杂环的合成。所以,
1引言
2酰基叠氮化物的合成
2.1来自羧酸衍生物的酰基叠氮化物
2.2通过直接转化羧酸的酰基叠氮化物
2.3醛类的酰基叠氮化物
2.4来自卤代芳烃,叠氮化钠和N-甲酰基糖精的氨基甲酰基叠氮化物
3异氰酸酯的形成机理
4二酰基叠氮化物的合成
5种合成应用
5.1嘧啶酮衍生物的合成
5.2二氢嘧啶酮和异喹啉酮衍生物
5.3四氢异喹啉骨架的合成
5.4五元杂环的合成
5.5由全邻苯二甲酸合成的杂环
5.6由2-(乙氧羰基)烟酸合成的杂环
5.7氮杂螺环化合物的形成
5.8 Parham型环化
5.9二氮杂pin酮衍生物
5.10吡啶衍生物的合成
5.11吲哚衍生物的合成
6其他
7结论
碳氮键的形成是有机化学中最重要的反应之一。文献中描述了各种用于生成C–N键的合成策略。例如,通过将酰基叠氮化物热分解成异氰酸酯,即柯蒂斯重排,然后水解,可以容易地合成伯胺。Curtius重排已被广泛使用。此外,Curtius重排的优点是可分离酰基叠氮化物以及相应的异氰酸酯。与各种亲核试剂反应后,异氰酸酯可转化为各种含氮化合物,这些亲核试剂可用作环化的重要合成子,换句话说,可用于杂环的合成。所以,
1引言
2酰基叠氮化物的合成
2.1来自羧酸衍生物的酰基叠氮化物
2.2通过直接转化羧酸的酰基叠氮化物
2.3醛类的酰基叠氮化物
2.4来自卤代芳烃,叠氮化钠和N-甲酰基糖精的氨基甲酰基叠氮化物
3异氰酸酯的形成机理
4二酰基叠氮化物的合成
5种合成应用
5.1嘧啶酮衍生物的合成
5.2二氢嘧啶酮和异喹啉酮衍生物
5.3四氢异喹啉骨架的合成
5.4五元杂环的合成
5.5由全邻苯二甲酸合成的杂环
5.6由2-(乙氧羰基)烟酸合成的杂环
5.7氮杂螺环化合物的形成
5.8 Parham型环化
5.9二氮杂pin酮衍生物
5.10吡啶衍生物的合成
5.11吲哚衍生物的合成
6其他
7结论