当前位置:
X-MOL 学术
›
Adv. Water Resour.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Attributing uncertainty in streamflow simulations due to variable inputs via the Quantile Flow Deviation metric
Advances in Water Resources ( IF 4.0 ) Pub Date : 2018-06-01 , DOI: 10.1016/j.advwatres.2018.01.022 Syed Abu Shoaib , Lucy Marshall , Ashish Sharma
Advances in Water Resources ( IF 4.0 ) Pub Date : 2018-06-01 , DOI: 10.1016/j.advwatres.2018.01.022 Syed Abu Shoaib , Lucy Marshall , Ashish Sharma
Abstract Every model to characterise a real world process is affected by uncertainty. Selecting a suitable model is a vital aspect of engineering planning and design. Observation or input errors make the prediction of modelled responses more uncertain. By way of a recently developed attribution metric, this study is aimed at developing a method for analysing variability in model inputs together with model structure variability to quantify their relative contributions in typical hydrological modelling applications. The Quantile Flow Deviation (QFD) metric is used to assess these alternate sources of uncertainty. The Australian Water Availability Project (AWAP) precipitation data for four different Australian catchments is used to analyse the impact of spatial rainfall variability on simulated streamflow variability via the QFD. The QFD metric attributes the variability in flow ensembles to uncertainty associated with the selection of a model structure and input time series. For the case study catchments, the relative contribution of input uncertainty due to rainfall is higher than that due to potential evapotranspiration, and overall input uncertainty is significant compared to model structure and parameter uncertainty. Overall, this study investigates the propagation of input uncertainty in a daily streamflow modelling scenario and demonstrates how input errors manifest across different streamflow magnitudes.
中文翻译:
通过分位数流量偏差度量将可变输入归因于流量模拟中的不确定性
摘要 每个表征现实世界过程的模型都受到不确定性的影响。选择合适的模型是工程规划和设计的一个重要方面。观察或输入错误使建模响应的预测更加不确定。通过最近开发的归因度量,本研究旨在开发一种分析模型输入变异性和模型结构变异性的方法,以量化它们在典型水文建模应用中的相对贡献。分位数流量偏差 (QFD) 指标用于评估这些替代的不确定性来源。澳大利亚四个不同集水区的澳大利亚可用水项目 (AWAP) 降水数据用于通过 QFD 分析空间降雨变化对模拟流量变化的影响。QFD 度量将流集合的可变性归因于与模型结构和输入时间序列选择相关的不确定性。对于案例研究流域,降雨引起的输入不确定性的相对贡献高于潜在蒸发量引起的输入不确定性的相对贡献,与模型结构和参数不确定性相比,总体输入不确定性显着。总的来说,这项研究调查了输入不确定性在日常水流建模场景中的传播,并展示了输入误差如何在不同的水流幅度中表现出来。降雨引起的输入不确定性的相对贡献高于潜在蒸散作用引起的输入不确定性的相对贡献,与模式结构和参数不确定性相比,总体输入不确定性显着。总的来说,这项研究调查了输入不确定性在日常水流建模场景中的传播,并展示了输入误差如何在不同的水流幅度中表现出来。降雨引起的输入不确定性的相对贡献高于潜在蒸散作用引起的输入不确定性的相对贡献,与模式结构和参数不确定性相比,总体输入不确定性显着。总的来说,这项研究调查了输入不确定性在日常水流建模场景中的传播,并展示了输入误差如何在不同的水流幅度中表现出来。
更新日期:2018-06-01
中文翻译:
通过分位数流量偏差度量将可变输入归因于流量模拟中的不确定性
摘要 每个表征现实世界过程的模型都受到不确定性的影响。选择合适的模型是工程规划和设计的一个重要方面。观察或输入错误使建模响应的预测更加不确定。通过最近开发的归因度量,本研究旨在开发一种分析模型输入变异性和模型结构变异性的方法,以量化它们在典型水文建模应用中的相对贡献。分位数流量偏差 (QFD) 指标用于评估这些替代的不确定性来源。澳大利亚四个不同集水区的澳大利亚可用水项目 (AWAP) 降水数据用于通过 QFD 分析空间降雨变化对模拟流量变化的影响。QFD 度量将流集合的可变性归因于与模型结构和输入时间序列选择相关的不确定性。对于案例研究流域,降雨引起的输入不确定性的相对贡献高于潜在蒸发量引起的输入不确定性的相对贡献,与模型结构和参数不确定性相比,总体输入不确定性显着。总的来说,这项研究调查了输入不确定性在日常水流建模场景中的传播,并展示了输入误差如何在不同的水流幅度中表现出来。降雨引起的输入不确定性的相对贡献高于潜在蒸散作用引起的输入不确定性的相对贡献,与模式结构和参数不确定性相比,总体输入不确定性显着。总的来说,这项研究调查了输入不确定性在日常水流建模场景中的传播,并展示了输入误差如何在不同的水流幅度中表现出来。降雨引起的输入不确定性的相对贡献高于潜在蒸散作用引起的输入不确定性的相对贡献,与模式结构和参数不确定性相比,总体输入不确定性显着。总的来说,这项研究调查了输入不确定性在日常水流建模场景中的传播,并展示了输入误差如何在不同的水流幅度中表现出来。