当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Restructuring of Cu2O to Cu2[email protected]–Organic Frameworks for Selective Electrochemical Reduction of CO2
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2019-02-18 00:00:00 , DOI: 10.1021/acsami.8b19111 Xinyi Tan 1 , Chang Yu 1 , Changtai Zhao 1 , Huawei Huang 1 , Xiuchao Yao 1 , Xiaotong Han 1 , Wei Guo 1 , Song Cui 1 , Hongling Huang 1 , Jieshan Qiu 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2019-02-18 00:00:00 , DOI: 10.1021/acsami.8b19111 Xinyi Tan 1 , Chang Yu 1 , Changtai Zhao 1 , Huawei Huang 1 , Xiuchao Yao 1 , Xiaotong Han 1 , Wei Guo 1 , Song Cui 1 , Hongling Huang 1 , Jieshan Qiu 1
Affiliation
Electrochemical reduction of carbon dioxide to hydrocarbons, driven by renewable power sources, is a fascinating and clean way to remedy greenhouse gas emission as a result of overdependence on fossil fuels and produce value-added fine chemicals. The Cu-based catalysts feature unique superiorities; nevertheless, achieving high hydrocarbon selectivity is still inhibited and remains a great challenge. In this study, we report on a tailor-made multifunction-coupled Cu-metal–organic framework (Cu-MOF) electrocatalyst by time-resolved controllable restructuration from Cu2O to Cu2[email protected] The restructured electrocatalyst features a time-responsive behavior and is equipped with high specific surface area for strong adsorption capacity of CO2 and abundant active sites for high electrocatalysis activity based on the as-produced MOF on the surface of Cu2O, as well as the accelerated charge transfer derived from the Cu2O core in comparison with the Cu-MOF. These intriguing characteristics finally lead to a prominent performance towards hydrocarbons, with a high hydrocarbon Faradaic efficiency (FE) of 79.4%, particularly, the CH4 FE as high as 63.2% (at −1.71 V). This work presents a novel and efficient strategy to configure MOF-based materials in energy and catalysis fields, with a focus on big surface area, high adsorption ability, and much more exposed active sites.
中文翻译:
将Cu 2 O重组为Cu 2 [电子邮件保护] –选择性电化学还原CO 2的有机框架
由可再生能源驱动的将二氧化碳电化学还原为碳氢化合物的方法,是一种引人入胜且清洁的方法,可以解决由于过度依赖化石燃料并产生高附加值精细化学品而导致的温室气体排放。铜基催化剂具有独特的优势。然而,仍然无法实现高烃选择性,这仍然是一个巨大的挑战。在这项研究中,我们报告了一种通过时间分辨可控的从Cu 2 O到Cu 2的可重构结构定制的多功能偶联铜-金属-有机框架(Cu-MOF)电催化剂[电子邮件保护]重构的电催化剂具有以下特点:响应行为,并具有高比表面积,可强力吸附CO 2基于Cu 2 O表面产生的MOF ,以及与Cu-MOF相比,源自Cu 2 O核的加速电荷转移,具有丰富的高电催化活性活性位。这些引人入胜的特性最终导致了对碳氢化合物的出色表现,其碳氢化合物的法拉第效率(FE)为79.4%,特别是CH 4 FE高达63.2%(在-1.71 V时)。这项工作提出了一种新颖有效的策略,用于在能源和催化领域配置基于MOF的材料,重点是大表面积,高吸附能力和更多暴露的活性部位。
更新日期:2019-02-18
中文翻译:
将Cu 2 O重组为Cu 2 [电子邮件保护] –选择性电化学还原CO 2的有机框架
由可再生能源驱动的将二氧化碳电化学还原为碳氢化合物的方法,是一种引人入胜且清洁的方法,可以解决由于过度依赖化石燃料并产生高附加值精细化学品而导致的温室气体排放。铜基催化剂具有独特的优势。然而,仍然无法实现高烃选择性,这仍然是一个巨大的挑战。在这项研究中,我们报告了一种通过时间分辨可控的从Cu 2 O到Cu 2的可重构结构定制的多功能偶联铜-金属-有机框架(Cu-MOF)电催化剂[电子邮件保护]重构的电催化剂具有以下特点:响应行为,并具有高比表面积,可强力吸附CO 2基于Cu 2 O表面产生的MOF ,以及与Cu-MOF相比,源自Cu 2 O核的加速电荷转移,具有丰富的高电催化活性活性位。这些引人入胜的特性最终导致了对碳氢化合物的出色表现,其碳氢化合物的法拉第效率(FE)为79.4%,特别是CH 4 FE高达63.2%(在-1.71 V时)。这项工作提出了一种新颖有效的策略,用于在能源和催化领域配置基于MOF的材料,重点是大表面积,高吸附能力和更多暴露的活性部位。