当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Highly efficient extraction of thorium from aqueous solution by fungal mycelium-based microspheres fabricated via immobilization
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2019-02-16 , DOI: 10.1016/j.cej.2019.02.116
Hanlin Ding , Xiaonuo Zhang , Hao Yang , Xuegang Luo , Xiaoyan Lin

In this paper, a facile immobilization method was applied to load alginate, ferric oxide and dopamine onto fungal mycelium to prepare a series of spherical composites as potential adsorbents for the separation and removal of thorium from aqueous solution. The structure and chemical properties of the as-prepared adsorbents were characterized in detail via scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX), Fourier transform infrared spectrometry (FT-IR), X-ray photoelectron spectroscopy (XPS), pH value at the point of zero charge (pHPZC) and thermogravimetric (TG) analysis. Based on the adsorption studies, the magnetic gamma-ferric oxide (γ-Fe2O3) and polydopamine (PDA) cofunctionalized fungal microspheres (FPFMs) exhibited excellent adsorption performance for thorium and could represent convenient agents for the removal and recovery of thorium. The equilibrium adsorption data for the FPFMs were well fitted by the Langmuir model, and a high maximum thorium adsorption capacity of 326.346 mg·g−1 was obtained. The thermodynamic parameter values (ΔH0 > 0, ΔS0 > 0, ΔG0 < 0) demonstrated that the thorium adsorption process was feasible, endothermic and spontaneous in nature. This work indicated that FPFMs have great potential to be employed as effective adsorbents for practical industrial water pollution treatment. Importantly, the possible mechanism of thorium adsorption on the homogeneous surface of FPFMs represented a combination of chelation interactions, coordination and ion exchange.



中文翻译:

通过固定化制备的基于真菌菌丝体的微球从水溶液中高效提取extraction

本文采用一种简便的固定方法,将藻酸盐,三氧化二铁和多巴胺负载到真菌菌丝体上,制备出一系列球形复合物作为潜在的吸附剂,用于从水溶液中分离和去除th。通过扫描电子显微镜-能量分散X射线光谱法(SEM-EDX),傅立叶变换红外光谱法(FT-IR),X射线光电子能谱(XPS)详细表征了所制备吸附剂的结构和化学性质。 ),零电荷点的pH值(pH PZC)和热重分析(TG)。基于所述吸附研究,磁性γ-氧化铁(γ-的Fe 2 ö 3)和聚多巴胺(PDA)共官能化的真菌微球(FPFM)对th具有优异的吸附性能,并且可以作为去除和回收th的方便试剂。朗格缪尔模型很好地拟合了FPFMs的平衡吸附数据,并获得了326.346 mg·g -1的最大maximum吸附能力。热力学参数值(ΔH 0  > 0,ΔS 0  > 0,ΔG 0 <0)表明or吸附过程是可行的,吸热且自然发生。这项工作表明,FPFMs具有很大的潜力,可以用作实际工业水污染处理的有效吸附剂。重要的是,th在FPFMs均匀表面上吸附的可能机理代表了螯合相互作用,配位和离子交换的结合。

更新日期:2019-02-16
down
wechat
bug