Nano Energy ( IF 16.8 ) Pub Date : 2019-02-16 , DOI: 10.1016/j.nanoen.2019.02.040 Yating Ma , Pengfei Liu , Qingshui Xie , Guobing Zhang , Hongfei Zheng , Yuxin Cai , Zhi Li , Laisen Wang , Zi-Zhong Zhu , Liqiang Mai , Dong-Liang Peng
Li-rich layered oxides (LRLO) with high specific capacity over 250 mA h g−1 are attractive cathode material candidates for the next-generation high performance lithium-ion batteries. However, LRLO always suffers from low initial Coulombic efficiency, poor cycling and rate properties. Herein, unique double-shell LRLO hollow microspheres with sandwich-like [email protected]@[email protected]@carbon shells ([email protected]@C) were successfully synthesized via a facile template-free method, followed by carbothermal reduction treatment. The fabricated [email protected]@C cathode delivers a high initial charge capacity of 312.5 mA h g−1 with a large initial Coulombic efficiency of 89.7%. After cycling 200 times, large and stable discharge capacities of 228.3 mA h g−1 and 196.1 mA h g−1 can be obtained at 1.0 C and 5.0 C, respectively. Moreover, coin-type full cell with [email protected]@C as cathode and Li4Ti5O12 as anode delivers outstanding lithium storage properties. The impressive electrochemical performances of [email protected]@C cathode material can be attributed to its multiscale coordinated design based on hierarchical double-shell hollow construction, the special [email protected]@carbon heterostructured shells and the introduced oxygen vacancies, which benefit to shorten Li-ion diffusion paths, strengthen structural stability and reduce side reactions.
中文翻译:
具有三明治状的双壳富锂层状氧化物空心微球[电子邮件保护] @ [电子邮件保护] @碳壳作为高倍率锂离子电池正极
具有超过250 mA h g -1的高比容量的富锂层状氧化物(LRLO)是下一代高性能锂离子电池的有吸引力的正极材料候选材料。但是,LRLO始终具有较低的初始库仑效率,较差的循环和速率特性。在此,通过简便的无模板方法成功地合成了具有夹心状[受电子邮件保护] @ [受电子邮件保护] @碳壳([受电子邮件保护] @C)的独特的双壳LRLO中空微球,然后进行了碳热还原处理。制成的[电子邮件保护] @C阴极可提供312.5 mA h g -1的高初始充电容量,且初始库仑效率为89.7%。循环200次后,大而稳定的放电容量为228.3 mA h g -1在1.0 C和5.0 C下分别可获得196.1 mA h g -1和196.1 mA h g -1。此外,以[电子邮件保护] @C为阴极,Li 4 Ti 5 O 12为阳极的纽扣型全电池具有出色的锂存储性能。[电子邮件保护] @C阴极材料令人印象深刻的电化学性能可归因于其基于分层双壳中空结构的多尺度协同设计,特殊的[电子邮件保护] @碳杂化结构壳和引入的氧空位,这有利于缩短锂离子扩散路径,可增强结构稳定性并减少副反应。