当前位置:
X-MOL 学术
›
Nat. Nanotechnol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Unravelling inherent electrocatalysis of mixed-conducting oxide activated by metal nanoparticle for fuel cell electrodes.
Nature Nanotechnology ( IF 38.1 ) Pub Date : 2019-02-18 , DOI: 10.1038/s41565-019-0367-4
Yoonseok Choi 1 , Seung Keun Cha 1, 2 , Hyunwoo Ha 3 , Siwon Lee 1 , Hyeon Kook Seo 1, 4 , Jeong Yong Lee 1, 4 , Hyun You Kim 3 , Sang Ouk Kim 1, 2 , WooChul Jung 1
Nature Nanotechnology ( IF 38.1 ) Pub Date : 2019-02-18 , DOI: 10.1038/s41565-019-0367-4
Yoonseok Choi 1 , Seung Keun Cha 1, 2 , Hyunwoo Ha 3 , Siwon Lee 1 , Hyeon Kook Seo 1, 4 , Jeong Yong Lee 1, 4 , Hyun You Kim 3 , Sang Ouk Kim 1, 2 , WooChul Jung 1
Affiliation
![]() |
Highly active metal nanoparticles are desired to serve in high-temperature electrocatalysis, for example, in solid oxide electrochemical cells. Unfortunately, the low thermal stability of nanosized particles and the sophisticated interface requirement for electrode structures to support concurrent ionic and electronic transport make it hard to identify the exact catalytic role of nanoparticles embedded within complex electrode architectures. Here we present an accurate analysis of the reactivity of oxide electrodes boosted by metal nanoparticles, where all particles participate in the reaction. Monodisperse particles (Pt, Pd, Au and Co), 10 nm in size and stable at high temperature (more than 600 °C), are uniformly distributed onto mixed-conducting oxide electrodes as a model electrochemical cell via self-assembled nanopatterning. We identify how the metal catalysts activate hydrogen electrooxidation on the ceria-based electrode surface and quantify how rapidly the reaction rate increases with proper choice of metal. These results suggest an ideal electrode design for high-temperature electrochemical applications.
中文翻译:
揭示金属纳米粒子为燃料电池电极活化的混合导电氧化物的固有电催化作用。
期望高活性金属纳米颗粒用于高温电催化,例如在固体氧化物电化学电池中。不幸的是,纳米级颗粒的低热稳定性和电极结构对同时进行离子和电子传输所必需的复杂界面要求,使得难以确定嵌入复杂电极体系结构中的纳米颗粒的确切催化作用。在这里,我们对所有金属颗粒均参与反应的金属纳米颗粒增强的氧化物电极的反应性进行了准确的分析。通过自组装纳米图案将尺寸为10 nm且在高温(高于600°C)下稳定的单分散颗粒(Pt,Pd,Au和Co)均匀分布在混合导电氧化物电极上,作为模型电化学电池。我们确定了金属催化剂如何激活基于二氧化铈的电极表面的氢电氧化,并量化了选择适当的金属后反应速率如何迅速提高。这些结果表明了用于高温电化学应用的理想电极设计。
更新日期:2019-02-19
中文翻译:

揭示金属纳米粒子为燃料电池电极活化的混合导电氧化物的固有电催化作用。
期望高活性金属纳米颗粒用于高温电催化,例如在固体氧化物电化学电池中。不幸的是,纳米级颗粒的低热稳定性和电极结构对同时进行离子和电子传输所必需的复杂界面要求,使得难以确定嵌入复杂电极体系结构中的纳米颗粒的确切催化作用。在这里,我们对所有金属颗粒均参与反应的金属纳米颗粒增强的氧化物电极的反应性进行了准确的分析。通过自组装纳米图案将尺寸为10 nm且在高温(高于600°C)下稳定的单分散颗粒(Pt,Pd,Au和Co)均匀分布在混合导电氧化物电极上,作为模型电化学电池。我们确定了金属催化剂如何激活基于二氧化铈的电极表面的氢电氧化,并量化了选择适当的金属后反应速率如何迅速提高。这些结果表明了用于高温电化学应用的理想电极设计。