当前位置: X-MOL 学术Langmuir › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In Situ Infrared Absorption Study of Plasma-Enhanced Atomic Layer Deposition of Silicon Nitride
Langmuir ( IF 3.7 ) Pub Date : 2018-02-12 00:00:00 , DOI: 10.1021/acs.langmuir.7b03522
Luis Fabián Peña 1 , Eric C. Mattson 1 , Charith E. Nanayakkara 1 , Kolade A. Oyekan 1 , Anupama Mallikarjunan 2 , Haripin Chandra 2 , Manchao Xiao 2 , Xinjian Lei 2 , Ronald M. Pearlstein 2 , Agnes Derecskei-Kovacs 3 , Yves J. Chabal 1
Affiliation  

Despite the success of plasma-enhanced atomic layer deposition (PEALD) in depositing quality silicon nitride films, a fundamental understanding of the growth mechanism has been difficult to obtain because of lack of in situ characterization to probe the surface reactions noninvasively and the complexity of reactions induced/enhanced by the plasma. These challenges have hindered the direct observation of intermediate species formed during the reactions. We address this challenge by examining the interaction of Ar plasma using atomically flat, monohydride-terminated Si(111) as a well-defined model surface and focusing on the initial PEALD with aminosilanes. In situ infrared and X-ray photoelectron spectroscopy reveals that an Ar plasma induces desorption of H atoms from H–Si(111) surfaces, leaving Si dangling bonds, and that the reaction of di-sec-butylaminosilane (DSBAS) with Ar plasma-treated surfaces requires the presence of both active sites (Si dangling bonds) and Si–H; there is no reaction on fully H-terminated or activated surfaces. By contrast, high-quality hydrofluoric acid-etched Si3N4 surfaces readily react with DSBAS, resulting in the formation of O–SiH3. However, the presence of back-bonded oxygen in O–SiH3 inhibits H desorption by Ar or N2 plasma, presumably because of stabilization of H against ion-induced desorption. Consequently, there is no reaction of adsorbed aminosilanes even after extensive Ar or N2 plasma treatments; a thermal process is necessary to partially remove H, thereby promoting the formation of active sites. These observations are consistent with a mechanism requiring the presence of both undercoordinated nitrogen and/or dangling bonds and unreacted surface hydrogen. Because active sites are involved, the PEALD process is found to be sensitive to the duration of the plasma exposure treatment and the purge time, during which passivation of these sites can occur.

中文翻译:

氮化硅等离子体增强原子层沉积的原位红外吸收研究

尽管等离子体增强原子层沉积(PEALD)在沉积优质氮化硅膜方面取得了成功,但由于缺乏就地方法表征无创地探测表面反应以及反应复杂性的原因,仍难以获得对生长机理的基本了解。等离子体诱导/增强。这些挑战阻碍了对反应过程中形成的中间物种的直接观察。我们通过使用原子平面,一氢化物封端的Si(111)作为定义明确的模型表面并重点关注与氨基硅烷的初始PEALD,研究了Ar等离子体的相互作用,从而解决了这一挑战。原位红外和X射线光电子能谱显示,Ar等离子体诱导H-Si(111)表面的H原子解吸,留下Si悬空键,并且di-的反应具有Ar等离子处理过的表面的仲丁基氨基硅烷(DSBAS)要求同时存在活性位点(Si悬挂键)和Si–H;在完全氢封端或活化的表面上没有反应。相比之下,高质量的氢氟酸蚀刻的Si 3 N 4表面容易与DSBAS反应,导致形成O–SiH 3。但是,在O–SiH 3中存在键合氧会抑制Ar或N 2等离子体对H的解吸,这可能是因为H对离子诱导的解吸具有稳定作用。因此,即使在大量的Ar或N 2之后,也不会发生吸附的氨基硅烷的反应。等离子处理;必须进行热处理才能部分除去H,从而促进活性位点的形成。这些观察结果与需要同时存在未配位的氮和/或悬挂键以及未反应的表面氢的机理是一致的。由于涉及活性位点,因此发现PEALD过程对等离子体暴露处理的持续时间和吹扫时间敏感,在此期间可能发生这些位点的钝化。
更新日期:2018-02-12
down
wechat
bug