当前位置:
X-MOL 学术
›
Adv. Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Quantum magnetism in minerals
Advances in Physics ( IF 35.0 ) Pub Date : 2019-02-13 , DOI: 10.1080/00018732.2018.1571986 D.S. Inosov 1
Advances in Physics ( IF 35.0 ) Pub Date : 2019-02-13 , DOI: 10.1080/00018732.2018.1571986 D.S. Inosov 1
Affiliation
The discovery of magnetism by the ancient Greeks was enabled by the natural occurrence of lodestone – a magnetized version of the mineral magnetite. Nowadays, natural minerals continue to inspire the search for novel magnetic materials with quantum-critical behaviour or exotic ground states such as spin liquids. The recent surge of interest in magnetic frustration and quantum magnetism was largely encouraged by crystalline structures of natural minerals realizing pyrochlore, kagome, or triangular arrangements of magnetic ions. As a result, names like azurite, jarosite, volborthite, and others, which were barely known beyond the mineralogical community a few decades ago, found their way into cutting-edge research in solid-state physics. In some cases, the structures of natural minerals are too complex to be synthesized artificially in a chemistry lab, especially in single-crystalline form, and there is a growing number of examples demonstrating the potential of natural specimens for experimental investigations in the field of quantum magnetism. On many other occasions, minerals may guide chemists in the synthesis of novel compounds with unusual magnetic properties. The present review attempts to embrace this quickly emerging interdisciplinary field that bridges mineralogy with low-temperature condensed-matter physics and quantum chemistry.
中文翻译:
矿物中的量子磁性
古希腊人对磁性的发现是由于天然存在的de石(一种矿化磁铁矿的磁化形式)而实现的。如今,天然矿物继续激发人们对寻找具有量子临界行为或奇异基态(例如自旋液体)的新型磁性材料的兴趣。天然矿物的晶体结构实现了烧绿石,kagome或磁性离子的三角形排列,这极大地鼓舞了人们最近对磁性无奈和量子磁性的兴趣激增。结果,几十年前在矿物学界鲜为人知的像石青石,黄钾铁矾,硅灰石等之类的名字,便进入了固体物理学的前沿研究领域。在某些情况下,天然矿物的结构过于复杂,无法在化学实验室中人工合成,尤其是单晶形式,并且越来越多的实例证明了天然标本在量子磁性领域进行实验研究的潜力。在许多其他情况下,矿物可能会指导化学家合成具有异常磁性的新型化合物。本综述试图拥抱这个新兴的跨学科领域,它将矿物学与低温凝聚态物理和量子化学联系起来。矿物可能会指导化学家合成具有异常磁性的新型化合物。本综述试图拥抱这个迅速出现的跨学科领域,它将矿物学与低温凝聚态物理和量子化学联系起来。矿物可能会指导化学家合成具有异常磁性的新型化合物。本综述试图拥抱这个迅速出现的跨学科领域,它将矿物学与低温凝聚态物理和量子化学联系起来。
更新日期:2019-02-14
中文翻译:
矿物中的量子磁性
古希腊人对磁性的发现是由于天然存在的de石(一种矿化磁铁矿的磁化形式)而实现的。如今,天然矿物继续激发人们对寻找具有量子临界行为或奇异基态(例如自旋液体)的新型磁性材料的兴趣。天然矿物的晶体结构实现了烧绿石,kagome或磁性离子的三角形排列,这极大地鼓舞了人们最近对磁性无奈和量子磁性的兴趣激增。结果,几十年前在矿物学界鲜为人知的像石青石,黄钾铁矾,硅灰石等之类的名字,便进入了固体物理学的前沿研究领域。在某些情况下,天然矿物的结构过于复杂,无法在化学实验室中人工合成,尤其是单晶形式,并且越来越多的实例证明了天然标本在量子磁性领域进行实验研究的潜力。在许多其他情况下,矿物可能会指导化学家合成具有异常磁性的新型化合物。本综述试图拥抱这个新兴的跨学科领域,它将矿物学与低温凝聚态物理和量子化学联系起来。矿物可能会指导化学家合成具有异常磁性的新型化合物。本综述试图拥抱这个迅速出现的跨学科领域,它将矿物学与低温凝聚态物理和量子化学联系起来。矿物可能会指导化学家合成具有异常磁性的新型化合物。本综述试图拥抱这个迅速出现的跨学科领域,它将矿物学与低温凝聚态物理和量子化学联系起来。