当前位置:
X-MOL 学术
›
Nat. Commun.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Suppressed phase separation of mixed-halide perovskites confined in endotaxial matrices.
Nature Communications ( IF 14.7 ) Pub Date : 2019-02-11 , DOI: 10.1038/s41467-019-08610-6 Xi Wang 1 , Yichuan Ling 1 , Xiujun Lian 1 , Yan Xin 2 , Kamal B Dhungana 3 , Fernando Perez-Orive 1 , Javon Knox 1 , Zhizhong Chen 4 , Yan Zhou 5 , Drake Beery 5 , Kenneth Hanson 5, 6 , Jian Shi 4 , Shangchao Lin 3, 6, 7 , Hanwei Gao 1, 2, 6
Nature Communications ( IF 14.7 ) Pub Date : 2019-02-11 , DOI: 10.1038/s41467-019-08610-6 Xi Wang 1 , Yichuan Ling 1 , Xiujun Lian 1 , Yan Xin 2 , Kamal B Dhungana 3 , Fernando Perez-Orive 1 , Javon Knox 1 , Zhizhong Chen 4 , Yan Zhou 5 , Drake Beery 5 , Kenneth Hanson 5, 6 , Jian Shi 4 , Shangchao Lin 3, 6, 7 , Hanwei Gao 1, 2, 6
Affiliation
The functionality and performance of a semiconductor is determined by its bandgap. Alloying, as for instance in InxGa1-xN, has been a mainstream strategy for tuning the bandgap. Keeping the semiconductor alloys in the miscibility gap (being homogeneous), however, is non-trivial. This challenge is now being extended to halide perovskites - an emerging class of photovoltaic materials. While the bandgap can be conveniently tuned by mixing different halogen ions, as in CsPb(BrxI1-x)3, the so-called mixed-halide perovskites suffer from severe phase separation under illumination. Here, we discover that such phase separation can be highly suppressed by embedding nanocrystals of mixed-halide perovskites in an endotaxial matrix. The tuned bandgap remains remarkably stable under extremely intensive illumination. The agreement between the experiments and a nucleation model suggests that the size of the nanocrystals and the host-guest interfaces are critical for the photo-stability. The stabilized bandgap will be essential for the development of perovskite-based optoelectronics, such as tandem solar cells and full-color LEDs.
中文翻译:
限制在内轴矩阵中的混合卤化物钙钛矿的相分离。
半导体的功能和性能取决于其带隙。合金化(例如InxGa1-xN中的合金化)已成为调整带隙的主流策略。然而,将半导体合金保持在可溶混间隙(均匀)中并非易事。现在,这一挑战已扩展到钙钛矿卤化物(一种新兴的光伏材料)上。尽管可以通过混合不同的卤素离子方便地调谐带隙,如在CsPb(BrxI1-x)3中一样,但是所谓的混合卤化物钙钛矿在光照下会发生严重的相分离。在这里,我们发现通过将混合卤化物钙钛矿的纳米晶体嵌入到内轴基体中可以高度抑制这种相分离。调谐后的带隙在极强的照明下仍保持稳定。实验与成核模型之间的一致性表明,纳米晶体的尺寸和主体-客体界面对光稳定性至关重要。稳定的带隙对于基于钙钛矿的光电器件(例如串联太阳能电池和全彩LED)的开发至关重要。
更新日期:2019-02-11
中文翻译:
限制在内轴矩阵中的混合卤化物钙钛矿的相分离。
半导体的功能和性能取决于其带隙。合金化(例如InxGa1-xN中的合金化)已成为调整带隙的主流策略。然而,将半导体合金保持在可溶混间隙(均匀)中并非易事。现在,这一挑战已扩展到钙钛矿卤化物(一种新兴的光伏材料)上。尽管可以通过混合不同的卤素离子方便地调谐带隙,如在CsPb(BrxI1-x)3中一样,但是所谓的混合卤化物钙钛矿在光照下会发生严重的相分离。在这里,我们发现通过将混合卤化物钙钛矿的纳米晶体嵌入到内轴基体中可以高度抑制这种相分离。调谐后的带隙在极强的照明下仍保持稳定。实验与成核模型之间的一致性表明,纳米晶体的尺寸和主体-客体界面对光稳定性至关重要。稳定的带隙对于基于钙钛矿的光电器件(例如串联太阳能电池和全彩LED)的开发至关重要。