当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Piezotronic Effect Enhanced Plasmonic Photocatalysis by AuNPs/BaTiO3 Heterostructures
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2019-02-01 , DOI: 10.1002/adfm.201808737 Shuya Xu 1, 2, 3, 4 , Limin Guo 2, 3, 5 , Qijun Sun 1, 2, 3 , Zhong Lin Wang 1, 2, 3, 6
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2019-02-01 , DOI: 10.1002/adfm.201808737 Shuya Xu 1, 2, 3, 4 , Limin Guo 2, 3, 5 , Qijun Sun 1, 2, 3 , Zhong Lin Wang 1, 2, 3, 6
Affiliation
Piezopotential‐assisted catalysis is of great significance for low cost and efficient catalysis processes. Here, Aux/BaTiO3 plasmonic photocatalysts are fabricated by precipitating Au nanoparticles on piezoelectric BaTiO3 nanocubes through a chemical approach. The Au nanoparticles (<8 nm) are decorated uniformly on the surface of BaTiO3, which endows the heterostructure with a wide light absorption from 300 to 600 nm. The photocatalytic properties of the heterostructures are investigated in detail toward methyl orange (MO) degradation. The Au content, piezoelectric potential of the BaTiO3 substrate, and surface plasmon resonance (SPR) are confirmed to be vital to the photocatalytic activity. The Au4/BaTiO3 shows an optimum photocatalytic performance for a complete degradation of MO in 75 min under full spectrum light irradiation with auxiliary ultrasonic excitation. The piezoelectric field originating from the deformation of BaTiO3 further enhances the separation of photon‐generated carriers induced by SPR and promotes the formation of hydroxyl radicals, which results in a strong oxidizing ability of organic dyes. This work introduces the piezotronic effect to enhance plasmonic photocatalysis with Aux/BaTiO3 heterostructures, which is ready to extend to other catalytic systems and offers a new option to design high‐performance catalysts for pollutant treatment.
中文翻译:
AuNPs / BaTiO3异质结构的压电效应增强等离子体光催化性能
压电势能催化对于低成本和有效的催化过程具有重要意义。在此,通过化学方法通过在压电BaTiO 3纳米立方体上沉淀Au纳米颗粒来制造Au x / BaTiO 3等离子体激元光催化剂。Au纳米颗粒(<8 nm)均匀地装饰在BaTiO 3的表面上,使异质结构具有300至600 nm的宽光吸收率。详细研究了异质结构对甲基橙(MO)降解的光催化性能。证实Au含量,BaTiO 3衬底的压电势和表面等离子体共振(SPR)对光催化活性至关重要。金4 / BaTiO 3在全光谱光照射和辅助超声激发下,在75分钟内能完全降解MO,显示出最佳的光催化性能。源自BaTiO 3变形的压电场进一步增强了SPR诱导的光子生载流子的分离,并促进了羟基自由基的形成,从而导致有机染料具有很强的氧化能力。这项工作介绍了压电效应,以利用Au x / BaTiO 3异质结构增强等离子体激元光催化作用,可以将其扩展到其他催化系统,并为设计用于污染物处理的高性能催化剂提供了新的选择。
更新日期:2019-02-01
中文翻译:
AuNPs / BaTiO3异质结构的压电效应增强等离子体光催化性能
压电势能催化对于低成本和有效的催化过程具有重要意义。在此,通过化学方法通过在压电BaTiO 3纳米立方体上沉淀Au纳米颗粒来制造Au x / BaTiO 3等离子体激元光催化剂。Au纳米颗粒(<8 nm)均匀地装饰在BaTiO 3的表面上,使异质结构具有300至600 nm的宽光吸收率。详细研究了异质结构对甲基橙(MO)降解的光催化性能。证实Au含量,BaTiO 3衬底的压电势和表面等离子体共振(SPR)对光催化活性至关重要。金4 / BaTiO 3在全光谱光照射和辅助超声激发下,在75分钟内能完全降解MO,显示出最佳的光催化性能。源自BaTiO 3变形的压电场进一步增强了SPR诱导的光子生载流子的分离,并促进了羟基自由基的形成,从而导致有机染料具有很强的氧化能力。这项工作介绍了压电效应,以利用Au x / BaTiO 3异质结构增强等离子体激元光催化作用,可以将其扩展到其他催化系统,并为设计用于污染物处理的高性能催化剂提供了新的选择。