当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Atomic Heterointerface-Induced Local Charge Distribution and Enhanced Water Adsorption Behavior in a Cobalt Phosphide Electrocatalyst for Self-Powered Highly Efficient Overall Water Splitting
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2019-02-04 00:00:00 , DOI: 10.1021/acsami.8b19341 Tao Meng 1 , Jinwen Qin 1 , Dan Xu 1 , Minhua Cao 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2019-02-04 00:00:00 , DOI: 10.1021/acsami.8b19341 Tao Meng 1 , Jinwen Qin 1 , Dan Xu 1 , Minhua Cao 1
Affiliation
Developing economical and highly efficient noble metal-free electrocatalysts for overall water splitting is an essential precondition for renewable energy conversion. Herein, we highlight atomic heterointerface engineering in constructing highly efficient cobalt phosphide (CoP)/Co9S8 electrocatalysts for full water splitting. A CoP/Co9S8 hybrid was prepared for the first time by partial homogeneous transformation of in situ-formed Co9S8, in which the atomic heterointerface was formed between CoP and Co9S8. Systematic experiments and theoretical calculations confirm that the as-formed atomic heterointerface can induce local charge distribution in CoP/Co9S8, which can not only accelerate the charge transfer but also optimize the hydrogen adsorption energy of CoP in favor of the fast transformation of Hads into H2. Meanwhile, the Co9S8 component can also increase the water adsorption capability of CoP/Co9S8. Benefiting from these outstanding advantages, an alkaline electrolyzer based on CoP/Co9S8 as both electrodes achieves a low cell voltage of 1.6 V at an operating current density of 10 mA cm–2, and at the same time, it can also be self-powered by a home-assembled Zn–air battery employing the same CoP/Co9S8 as the air electrode for prospectively achieving renewable energy conversion. This work demonstrates the importance of heterostructure engineering in developing noble metal-free catalysts for high-performance water electrolysis.
中文翻译:
原子异质界面诱导的局部电荷分布和增强的钴电自催化高效总水分解电催化剂中水的吸附行为
开发用于整体水分解的经济高效的无贵金属电催化剂是可再生能源转化的必要先决条件。在本文中,我们着重介绍了在构建高效的全水分解磷化钴(CoP)/ Co 9 S 8电催化剂时采用原子异质界面工程技术。通过部分均匀转化原位形成的Co 9 S 8首次制备了CoP / Co 9 S 8杂化物,其中CoP和Co 9 S 8之间形成了原子异质界面。系统实验和理论计算证实,形成的原子异质界面可以诱导CoP / Co 9 S 8中的局部电荷分布,不仅可以加速电荷转移,而且可以优化CoP的氢吸附能,有利于CoP的快速转变。 H广告变成H 2。同时,Co 9 S 8组分还可以提高CoP / Co 9 S 8的吸水能力。受益于这些突出的优势,基于CoP / Co 9 S 8的碱性电解槽由于两个电极在10 mA cm –2的工作电流密度下均能达到1.6 V的低电池电压,同时,它也可以由采用相同CoP / Co 9 S 8作为空气电极,有望实现可再生能源的转化。这项工作证明了异质结构工程在开发高性能水电解用无贵金属催化剂中的重要性。
更新日期:2019-02-04
中文翻译:
原子异质界面诱导的局部电荷分布和增强的钴电自催化高效总水分解电催化剂中水的吸附行为
开发用于整体水分解的经济高效的无贵金属电催化剂是可再生能源转化的必要先决条件。在本文中,我们着重介绍了在构建高效的全水分解磷化钴(CoP)/ Co 9 S 8电催化剂时采用原子异质界面工程技术。通过部分均匀转化原位形成的Co 9 S 8首次制备了CoP / Co 9 S 8杂化物,其中CoP和Co 9 S 8之间形成了原子异质界面。系统实验和理论计算证实,形成的原子异质界面可以诱导CoP / Co 9 S 8中的局部电荷分布,不仅可以加速电荷转移,而且可以优化CoP的氢吸附能,有利于CoP的快速转变。 H广告变成H 2。同时,Co 9 S 8组分还可以提高CoP / Co 9 S 8的吸水能力。受益于这些突出的优势,基于CoP / Co 9 S 8的碱性电解槽由于两个电极在10 mA cm –2的工作电流密度下均能达到1.6 V的低电池电压,同时,它也可以由采用相同CoP / Co 9 S 8作为空气电极,有望实现可再生能源的转化。这项工作证明了异质结构工程在开发高性能水电解用无贵金属催化剂中的重要性。